• POJ 题目2823 Sliding Window(RMQ,固定区间长度)


    Sliding Window
    Time Limit: 12000MS   Memory Limit: 65536K
    Total Submissions: 46507   Accepted: 13442
    Case Time Limit: 5000MS

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window position Minimum value Maximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7
    

    Source

    POJ Monthly--2006.04.28, Ikki

    固定区间长度一维的数组就好,二维超内存

    ac代码

    #include<stdio.h>
    #include<string.h>
    #include<math.h>
    #define max(a,b) (a>b?a:b)
    #define min(a,b) (a>b?b:a)
    int maxv[1000010],minv[1000010],a[1000010],n,m,k;
    void init()
    {
    	int i,j;
    	for(i=1;i<=n;i++)
    	{
    		minv[i]=a[i];
    		maxv[i]=a[i];
    	}
    	for(i=1;i<=k;i++)
    	{
    		for(j=1;j+(1<<i)-1<=n;j++)
    		{
    			minv[j]=min(minv[j],minv[j+(1<<(i-1))]);
    			maxv[j]=max(maxv[j],maxv[j+(1<<(i-1))]);
    		}
    	}
    }
    int q_max(int l,int r)
    {
    //	int k=(int)(log((double)(r-l+1))/log(2.0));
    	return max(maxv[l],maxv[r-(1<<k)+1]);
    }
    int q_min(int l,int r)
    {
    //	int k=(int)(log((double)(r-l+1))/log(2.0));
    	return min(minv[l],minv[r-(1<<k)+1]);
    }
    int main()
    {
    //	int n,m;
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		int i;
    		for(i=1;i<=n;i++)
    		{
    			scanf("%d",&a[i]);
    		}
    		k=(int)(log(double(m))/log(2.0));
    		init();
    		if(m<=n)
    		{
    			printf("%d",q_min(1,m+1-1));
    		}
    		for(i=2;i+m-1<=n;i++)
    		{
    			printf(" %d",q_min(i,m+i-1));
    		}
    		printf("
    ");
    		if(m<=n)
    		{
    			printf("%d",q_max(1,m+1-1));
    		}
    		for(i=2;i+m-1<=n;i++)
    		{
    			printf(" %d",q_max(i,m+i-1));
    		}
    		printf("
    ");
    	}
    }


  • 相关阅读:
    Stanford机器学习笔记-10. 降维(Dimensionality Reduction)
    Stanford机器学习笔记-9. 聚类(K-means算法)
    Stanford机器学习笔记-8. 支持向量机(SVMs)概述
    Stanford机器学习笔记-7. Machine Learning System Design
    Stanford机器学习笔记-6. 学习模型的评估和选择
    Stanford机器学习笔记-5.神经网络Neural Networks (part two)
    k sum 问题系列
    正则表达式
    Manacher算法--O(n)回文子串算法
    leetcode难度及面试频率
  • 原文地址:https://www.cnblogs.com/llguanli/p/8312929.html
Copyright © 2020-2023  润新知