Description
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
(a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a little more difficult problem:
Given integers N and M, how many integer X satisfies 1<=X<=N and (X,N)>=M.
Input
The first line of input is an integer T(T<=100) representing the number of test cases. The following T lines each contains two numbers N and M (2<=N<=1000000000, 1<=M<=N), representing a test case.
Output
For each test case,output the answer on a single line.
Sample Input
3 1 1 10 2 10000 72
Sample Output
1 6 260
题目大意:求m到n之间有多少个x,x满足 gcd(x,n)>=m,
用到欧拉函数。
思路:先求出 n 大于等于 m 的因子 i,再计算 n/i 的欧拉函数,最后相加即可
具体代码如下:
#include <stdio.h> #include <iostream> using namespace std; int ol(int n) { int s=n,i,j; for(i=2;i*i<=n;i++) { if(n%i==0) { while (!(n%i)) n/=i; s=s/i*(i-1); } } if(n!=1) s=s/n*(n-1); return s; } int main() { int t,n,m,sum,i,j; scanf("%d",&t); while(t--) { sum=0; scanf("%d%d",&n,&m); for(i=1;i*i<=n;i++) if(n%i==0) { if(i>=m) sum+=ol(n/i); if((n/i)!=i&&(n/i)>=m) sum+=ol(i); } printf("%d ",sum); } return 0; }