Can you find it?
Time Limit: 10000/3000 MS (Java/Others) Memory Limit: 32768/10000 K (Java/Others)
Total Submission(s): 8118 Accepted Submission(s): 2124
Problem Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.
Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.
Output
For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".
Sample Input
3 3 3
1 2 3
1 2 3
1 2 3
3
1
4
10
Sample Output
Case 1:
NO
YES
NO
//这个题开始用普通方法不断剪枝,开始是各种wa,然后就是tle //后来看到别人合并两个数组,然后再对这个数组二分,这种方法优化了不少 #include<stdio.h> #include<string.h> #include<algorithm> using namespace std; int a[1000],b[1000],ab[400000],c[1000]; int main() { int A,B,C,n,i,j,k,ans=1,x; while(scanf("%d %d %d",&A,&B,&C)!=EOF) { k=0; memset(a,0,sizeof(a)); memset(b,0,sizeof(b)); memset(c,0,sizeof(c)); memset(ab,0,sizeof(ab)); for(i=0;i<A;i++) scanf("%d",&a[i]); for(i=0;i<B;i++) scanf("%d",&b[i]); for(i=0;i<C;i++) scanf("%d",&c[i]); for(i=0;i<A;i++)//合并a,b数组 for(j=0;j<B;j++) ab[k++]=a[i]+b[j]; sort(ab,ab+k);//对合并后的数组排序 scanf("%d",&n); printf("Case %d: ",ans++); while(n--) { scanf("%d",&x); int l,r,mid,flag=0,t; for(i=0;i<C;i++) { l=0;r=A*B; while(l<=r)//二分 { mid=(l+r)/2; if((ab[mid]+c[i])>x)//这里很奇怪如果这样写 if(ab[mid]+c[i]>x)也就是不加括号就WA了 r=mid-1; else if((ab[mid]+c[i])==x)//找到了就直接跳出了 { flag=1; break; } else l=mid+1; } if(flag) { printf("YES "); break; } } if(i==C) printf("NO "); } } return 0; }