• 从零开始写代码 ID3决策树Python


    视频版地址B站:从零开始写代码 Python ID3决策树算法分析与实现_哔哩哔哩_bilibili

     

    代码如下:

    # author:会武术之白猫
    # date:2021-11-6
    import math
    
    def createDataSet():
        # dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
        # labels = ['no sufacing', 'flippers']
        dataSet = [
            [1,1,2,0,1,1,0,'感冒'],
            [2,0,3,2,0,2,2,'流感'],
            [3,0,0,1,1,1,1,'流感'],
            [0,0,1,1,1,0,1,'感冒'],
            [3,1,2,2,0,2,2,'流感'],
            [0,1,2,0,1,0,0,'感冒'],
            [2,0,2,2,0,2,2,'流感'],
            [0,1,3,0,0,1,1,'感冒']]
        labels = ['发冷','喉咙痛','咳嗽','头痛','鼻塞','疲劳','发烧']
        return dataSet, labels
    
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        # 为分类创建字典
        labelCounts = {}
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if currentLabel not in labelCounts.keys():
                labelCounts.setdefault(currentLabel, 0)
            labelCounts[currentLabel] += 1
    
        # 计算香农墒
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key]) / numEntries
            shannonEnt += prob * math.log2(1 / prob)
        return shannonEnt
    
    # 定义按照某个特征进行划分的函数 splitDataSet
    # 输入三个变量(带划分数据集, 特征,分类值)
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for featVec in dataSet:
            if featVec[axis] == value:
                reduceFeatVec = featVec[:axis]
                reduceFeatVec.extend(featVec[axis + 1:])
                retDataSet.append(reduceFeatVec)
        return retDataSet  #返回不含划分特征的子集
    
    #  定义按照最大信息增益划分数据的函数
    def chooseBestFeatureToSplit(dataSet):
        numFeature = len(dataSet[0]) - 1
        baseEntropy = calcShannonEnt(dataSet)
        bestInforGain = 0
        bestFeature = -1
    
        for i in range(numFeature):
            featList = [number[i] for number in dataSet] #得到某个特征下所有值
            uniqualVals = set(featList) #set无重复的属性特征值
            newEntrogy = 0
    
            #求和
            for value in uniqualVals:
                subDataSet = splitDataSet(dataSet, i, value)
                prob = len(subDataSet) / float(len(dataSet)) #即p(t)
                newEntrogy += prob * calcShannonEnt(subDataSet) #对各子集求香农墒
    
            infoGain = baseEntropy - newEntrogy #计算信息增益
            #print(infoGain)
    
            # 最大信息增益
            if infoGain > bestInforGain:
                bestInforGain = infoGain
                bestFeature = i
        return bestFeature
    
    # 投票表决代码
    def majorityCnt(classList):
        classCount = {}
        for vote in classList:
            if vote not in classCount.keys():
                classCount.setdefault(vote, 0)
            classCount[vote] += 1
        sortedClassCount = sorted(classCount.items(), key=lambda i:i[1], reverse=True)
        return sortedClassCount[0][0]
    
    def createTree(dataSet, labels):
        classList = [example[-1] for example in dataSet]
        # print(dataSet)
        # print(classList)
        # 类别相同,停止划分
        if classList.count(classList[0]) == len(classList):
            return classList[0]
    
        # 判断是否遍历完所有的特征,是,返回个数最多的类别
        if len(dataSet[0]) == 1:
            return majorityCnt(classList)
    
        #按照信息增益最高选择分类特征属性
        bestFeat = chooseBestFeatureToSplit(dataSet) #分类编号
        bestFeatLabel = labels[bestFeat]  #该特征的label
        myTree = {bestFeatLabel: {}}
        del (labels[bestFeat]) #移除该label
    
        featValues = [example[bestFeat] for example in dataSet]
        uniqueVals = set(featValues)
        for value in uniqueVals:
            subLabels = labels[:]  #子集合
            #构建数据的子集合,并进行递归
            myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)
        return myTree
    
    def classify(inputTree, featLabels, testVec):
        """
        :param inputTree: 决策树
        :param featLabels: 属性特征标签
        :param testVec: 测试数据
        :return: 所属分类
        """
        firstStr = list(inputTree.keys())[0] #树的第一个属性
        sendDict = inputTree[firstStr]
    
        featIndex = featLabels.index(firstStr)
        classLabel = None
        for key in sendDict.keys():
    
            if testVec[featIndex] == key:
                if type(sendDict[key]).__name__ == 'dict':
                    classLabel = classify(sendDict[key], featLabels, testVec)
                else:
                    classLabel = sendDict[key]
        return classLabel
    
    if __name__ == '__main__':
        dataSet, labels = createDataSet()
        r = chooseBestFeatureToSplit(dataSet)
        #print(r)
        myTree = createTree(dataSet, labels)
        print(myTree)
        #  --> {'no sufacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}
        res = classify(myTree, ['发冷','喉咙痛','咳嗽','头痛','鼻塞','疲劳','发烧'], [1,1,2,0,1,1,0])
        print(res)
  • 相关阅读:
    图片数据增强
    Crowd Counting using Deep Recurrent Spatial-Aware Network (IJCAI2018)(人群密度)(待补)
    Crowd Counting by Adaptively Fusing Predictions from an Image Pyramid (BMVC2018)
    Top-Down Feedback for Crowd Counting Convolutional Neural Network (AAAI2018) (人群密度)
    [SANet] Scale Aggregation Network for Accurate and Efficient Crowd Counting (ECCV2018)(人群密度)
    Human Protein Atlas Image
    google
    AE(auto encoder)
    feature aggregate
    Arcgis Server api for javascript加载天地图(转)
  • 原文地址:https://www.cnblogs.com/ljy1227476113/p/15517999.html
Copyright © 2020-2023  润新知