在科学计算中经常要计算矩阵的乘积。矩阵A和B可乘的条件是矩阵A的列数等于矩阵B的行数。若A是一个p×q的矩阵,B是一个q×r的矩阵,则其乘积C=AB是一个p×r的矩阵。由该公式知计算C=AB总共需要pqr次的数乘。其标准计算公式为: 现在的问题是,给定n个矩阵{A1,A2,…,An}。其中Ai与Ai+1是可乘的,i=1,2,…,n-1。要求计算出这n个矩阵的连乘积A1A2…An,最少的乘法次数。
递归公式:
public class ProMatri { public static void main(String arg[]){ } void MatrixChain(int p[],int n,int m[][],int s[][]) { for (int i = 1; i <= n; i++) m[i][i] = 0; for (int r = 2; r <= n; r++) for (int i = 1; i <= n - r+1; i++) { int j=i+r-1; m[i][j] = m[i+1][j]+ p[i-1]*p[i]*p[j]; s[i][j] = i; for (int k = i+1; k < j; k++) { int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]; if (t < m[i][j]) { m[i][j] = t; s[i][j] = k;} } } } void traceback(int i,int j,int s[][]) { if(i==j) System.out.print("A"+i); else if (i==j-1) System.out.print("(A"+i+"A"+j+")"); else { System.out.print("("); traceback(i,s[i][j],s); traceback(s[i][j]+1,j,s); System.out.print(")"); } } }