• 第五章-大数定律&中心极限定理


    大数定律: 大量的重复试验平均结果的稳定性

    • 切比雪夫不等式:
      • 定理:假设x随机变量,EX和DX都存在, 任取ξ >0, 则P(|X-Ex|≥ξ) ≤ DX/ξ2  
        • DX越小, 波动越小, 落在外面的概率越小
        • DX越大, 波动越大, 落在外面的概率越大
        • ξ越大, 落在外面的概率越小
        • ξ越小, 落在外面的概率越大
    • 切比雪夫大数定律:
      • 收敛: an→a, 任意ξ>0, n>N时, |an-a|<Σ
      • 依概率收敛: Xn→a, 存在一个ξ<0, 任意N>0, 时P{|Xn-a|<ξ} = limn→∞P{|Xn-a|<ξ}=1
    • 伯努利大数定律:
      • 重复n次试验, 事件A发生了Mn次. 概率未P. Mn/n是频率. limn→∞P{|Mn/n-P|<ξ}=1(limn→∞P{|Mn/n-P|≥ξ}=0)
    • 定理3:切比雪夫大数定律
      • x1,...xn时不行哎你给惯的额随机变量, EXi和DXi都存在, 方差有界, DX≤M,任意ξ>0, limn→∞P{|1/nΣi=1nXi - 1/nΣi=1nEXi|<ξ} =1
    • 推论: X1,...Xn独立同分布, EXi=μ, DXi=σ2, 方差无要求, limn→∞P{|1/nΣi=1nXi-μ|<ξ} = 1  (平均数→期望)

    中心极限定理:

    • 现象由大量相互独立的因素影响
    • 大量独立同分布的变量之和的极限分布时正太分布
    • 定理: X1,...Xn...是独立同分布(不管什么分布), EXi=μ, DXi = σ2, 0<σ2<+∞
      • limn→∞P[(Σi=1nXi - nμ)/(n½σ)≤x] = Φ0(x),   
        • Y = Σi=1nXi,  EY = EΣi=1nXi = nμ,  DY = D(Σi=1nXi) = Σi=1nDXi = nσ

    定理: Yn时参数未p的二项式分布, n,p服从二项式分布

    • limn→∞P[(Yn-np)/(np(1-p)½)≤x] = Φ0(x)
  • 相关阅读:
    【分享】管理的最高境界是简单
    建立市场化风险评估机制推进地方政府信用评级建设
    手游-神雕侠侣 85侠客纪攻略(已通关)
    使用git的分支功能实现定制功能摘取与组合的想法
    组内正则培训记录
    组内Linq培训记录
    一次代码重构记录
    git代码库误操作还原记录
    关于代码重构的开始
    如何管理高手、大牛?
  • 原文地址:https://www.cnblogs.com/ljc-0923/p/15125346.html
Copyright © 2020-2023  润新知