「Luogu5395」【模板】第二类斯特林数·行
Solution
一句话题意:求(_{i=0}^negin{Bmatrix}n\iend{Bmatrix})
根据第二类斯特林数的展开式,有
[egin{Bmatrix}n\kend{Bmatrix}=frac{1}{k!}sum_{i=0}^k(-1)^iegin{pmatrix}k\iend{pmatrix}(k-i)^n
]
具体证明可以看这里
进一步整理,式子化为
[egin{Bmatrix}n\kend{Bmatrix}=sum_{i=0}^kfrac{(-1)^i}{i!} imes frac{(k-i)^n}{(k-i)!}
]
可以发现这是一个卷积的形式
构造多项式
[F(x)=sum_{i=0}^nfrac{(-1)^i}{i!}x^i
]
[G(x)=sum_{i=0}^nfrac{i^n}{i!}x^i
]
[S(x)=F(x)*G(x)
]
则(S(x))的(k)次项系数即为(egin{Bmatrix}n\kend{Bmatrix})
预处理阶乘的逆元
本题的模数有原根(3),所以直接用(NTT)做卷积就可以了
时间复杂度(O(nlog n))
Code
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#define inv(x) (fastpow((x),mod-2))
using namespace std;
typedef long long ll;
const int maxn=200005;
const ll mod=167772161,g=3,ig=55924054;
int n;
ll a[maxn<<2],b[maxn<<2],ifac[maxn];
ll fastpow(ll a,ll b)
{
ll re=1,base=a;
while(b)
{
if(b&1)
re=re*base%mod;
base=base*base%mod;
b>>=1;
}
return re;
}
int len;
int rev[maxn<<2];
void NTT(ll *f,int type)
{
for(register int i=0;i<len;++i)
if(i<rev[i])
swap(f[i],f[rev[i]]);
for(register int p=2;p<=len;p<<=1)
{
int length=p>>1;
ll unr=fastpow(type==1?g:ig,(mod-1)/p);
for(register int l=0;l<len;l+=p)
{
ll w=1;
for(register int i=l;i<l+length;++i,w=w*unr%mod)
{
ll tt=f[i+length]*w%mod;
f[i+length]=(f[i]-tt+mod)%mod;
f[i]=(f[i]+tt)%mod;
}
}
}
if(type==-1)
{
ll ilen=inv(len);
for(register int i=0;i<len;++i)
f[i]=f[i]*ilen%mod;
}
}
int main()
{
scanf("%d",&n);
ifac[0]=1;
for(register ll i=1;i<=n;++i)
ifac[i]=ifac[i-1]*i%mod;
ifac[n]=inv(ifac[n]);
for(register ll i=n-1;i;--i)
ifac[i]=ifac[i+1]*(i+1)%mod;
for(register int i=0,o=1;i<=n;++i,o=mod-o)
a[i]=o*ifac[i]%mod,b[i]=fastpow(i,n)*ifac[i]%mod;
for(len=1;len<=n+n;len<<=1);
for(register int i=1;i<len;++i)
rev[i]=(rev[i>>1]>>1)|((i&1)?(len>>1):0);
NTT(a,1);
NTT(b,1);
for(register int i=0;i<len;++i)
a[i]=a[i]*b[i]%mod;
NTT(a,-1);
for(register int i=0;i<=n;++i)
printf("%lld ",a[i]);
}