• hdu 5468(dfs序+容斥原理)


    Puzzled Elena

    Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 1247    Accepted Submission(s): 370


    Problem Description
    Since both Stefan and Damon fell in love with Elena, and it was really difficult for her to choose. Bonnie, her best friend, suggested her to throw a question to them, and she would choose the one who can solve it.

    Suppose there is a tree with n vertices and n - 1 edges, and there is a value at each vertex. The root is vertex 1. Then for each vertex, could you tell me how many vertices of its subtree can be said to be co-prime with itself?
    NOTES: Two vertices are said to be co-prime if their values' GCD (greatest common divisor) equals 1.
     
    Input
    There are multiply tests (no more than 8).
    For each test, the first line has a number n (1n105), after that has n1 lines, each line has two numbers a and b (1a,bn), representing that vertex a is connect with vertex b. Then the next line has n numbers, the ith number indicates the value of the ith vertex. Values of vertices are not less than 1 and not more than 105.
     
    Output
    For each test, at first, please output "Case #k: ", k is the number of test. Then, please output one line with n numbers (separated by spaces), representing the answer of each vertex.
     
    Sample Input
    5 1 2 1 3 2 4 2 5 6 2 3 4 5
     
    Sample Output
    Case #1: 1 1 0 0 0
     
    Source
     
    题意:给定 n 个结点 n-1条边的一棵树 ,每个结点都有一个 value,问每个节点的子节点的value与其value互素的个数有多少?
    题解:我们可以先预处理出 1 ~ 10^5 内所有整数的因子,然后进行 DFS,当进入结点 u 时,记录当前与 u 不互素的数的个数为 a ,出节点 u 时,记录这时与 u不互素的个数为b,那么 u 的子树中 与 value[u] 不互素的个数就为 b-a ,当前结点 u 的子节点结点个数为 s,那么与 其互素的数个数为 s - (b-a).这里用一个 cnt[i]数组记录当前含有因数 i 的结点的个数,每次退出结点 u 的时候要将含有其因子的数量累加.还有就是当 val[u] == 1时,他与本身互素,答案 +1 .
    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <bits/stdc++.h>
    using namespace std;
    typedef long long  LL;
    const int N = 100005;
    vector <int> factor[N];
    vector <int> edge[N];
    void init(){
        for(int i=2;i<N;i++){
            factor[i].clear();
            int n = i;
            for(int j=2;j*j<=n;j++){
                if(n%j==0){
                    factor[i].push_back(j);
                    while(n%j==0) n/=j;
                }
            }
            if(n>1) factor[i].push_back(n);
        }
    }
    int cnt[N]; ///cnt[i]表示遍历到当前结点时候,含有因数i的结点个数。
    int val[N];
    int ans[N];
    int solve(int n,int val){
        int len = factor[n].size(),ans=0;
        for(int i=1;i<(1<<len);i++){
            int odd = 0;
            int mul = 1;
            for(int j=0;j<len;j++){
                if((i>>j)&1){
                    odd++;
                    mul*=factor[n][j];
                }
            }
            if(odd&1){
                ans+=cnt[mul];
            }
            else ans-=cnt[mul];
            cnt[mul]+=val; /// val = 1 代表退出当前结点时把因子加上
        }
        return ans;
    }
    int dfs(int u,int pre){
        int L = solve(val[u],0);  ///第一次遍历到 u,拥有与 u 相同的因子个数
        int s = 0; ///s 代表当前结点下的子节点数目
        for(int i=0;i<edge[u].size();i++){
            int v = edge[u][i];
            if(v==pre) continue;
            s+=dfs(v,u);
        }
        int R = solve(val[u],1);
        ans[u] = s - (R-L);
        if(val[u]==1) ans[u]++;
        return s+1;
    }
    int main()
    {
        init();
        int n,t = 1;
        while(scanf("%d",&n)!=EOF){
            memset(cnt,0,sizeof(cnt));
            for(int i=1;i<=n;i++) edge[i].clear();
            for(int i=1;i<n;i++){
                int u,v;
                scanf("%d%d",&u,&v);
                edge[u].push_back(v);
                edge[v].push_back(u);
            }
            for(int i=1;i<=n;i++){
                scanf("%d",&val[i]);
            }
            dfs(1,-1);
            bool flag = true;
            printf("Case #%d: ",t++);
            for(int i=1;i<=n;i++){
                if(!flag) printf(" ");
                flag = false;
                printf("%d",ans[i]);
            }
            printf("
    ");
        }
        return 0;
    }
  • 相关阅读:
    [运维-安全]CentOS7.0环境下安装kangle和easypanel
    (转)FastDFS文件存储
    使用mybatis-generator-core自动生成代码
    SSM框架中常用的配置文件
    Spring MVC文件上传和下载
    Spring MVC-拦截器
    Spring MVC之JSON数据交互和RESTful的支持
    Spring MVC数据绑定(二)
    Spring MVC数据绑定(一)
    Spring MVC简介
  • 原文地址:https://www.cnblogs.com/liyinggang/p/5926105.html
Copyright © 2020-2023  润新知