• Caffe深入分析(源码)


    Caffe的整体流程图:

    程序入口:main()

    1 int main(int argc, char** argv) {
    2       .....
    3       return GetBrewFunction(caffe::string(argv[1]))();
    4       ....
    5 }

    g_brew_map实现过程,首先通过 typedef定义函数指针 typedef int (*BrewFunction)(); 这个是用typedef定义函数指针方法。这个程序定义一个BrewFunction函数指针类型,在caffe.cpp 中 BrewFunction 作为GetBrewFunction()函数的返回类型,可以是 train(),test(),device_query(),time() 这四个函数指针的其中一个。在train(),test(),中可以调用solver类的函数,从而进入到net,进入到每一层,运行整个caffe程序。然后对每个函数注册。

    1 RegisterBrewFunction(train)
    2 RegisterBrewFunction(test)
    3 RegisterBrewFunction(device_query)
    4 RegisterBrewFunction(time)
    • train: 训练或者调整一个模型
    • test : 在测试集上测试一个模型
    • device_query : 打印GPU的调试信息
    • time: 压测一个模型的执行时间

    如果需要,可以增加其他的方式,然后通过RegisterBrewFunction()函数注册一下即可。

    接着调用train()函数,train函数中主要有三个方法ReadSolverParamsFromTextFileOrDie、CreateSolver、Solve。

     1 // Train / Finetune a model.
     2 int train() {
     3   ......
     4   caffe::SolverParameter solver_param;
     5   caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param);//从-solver参数读取solver_param
     6   ......
     7   shared_ptr<caffe::Solver<float> >
     8       solver(caffe::SolverRegistry<float>::CreateSolver(solver_param));//从参数创建solver,同样采用string到函数指针的映射实现,用到了工厂模式
     9 
    10   if (FLAGS_snapshot.size()) {//迭代snapshot次后保存模型一次
    11     LOG(INFO) << "Resuming from " << FLAGS_snapshot;
    12     solver->Restore(FLAGS_snapshot.c_str());
    13   } else if (FLAGS_weights.size()) {//若采用finetuning,则拷贝weight到指定模型
    14     CopyLayers(solver.get(), FLAGS_weights);
    15   }
    16 
    17   if (gpus.size() > 1) {
    18     caffe::P2PSync<float> sync(solver, NULL, solver->param());
    19     sync.Run(gpus);
    20   } else {
    21     LOG(INFO) << "Starting Optimization";
    22     solver->Solve();//开始训练网络
    23   }
    24   LOG(INFO) << "Optimization Done.";
    25   return 0;
    26 }

    ReadSolverParamsFromTextFileOrDie

    caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param)解析-solver指定的solver.prototxt的文件内容到solver_param中

    CreateSolver

    CreateSolver函数构建solver和net,该函数是初始化的入口,会通过执行Solver的构造函数,调用 void Solver<Dtype>::Init(const SolverParameter& param),该函数内有InitTrainNet()、InitTestNets()。对于InitTrainNet函数:

    ......
    net_.reset(new Net<Dtype>(net_param));

    调用Net类的构造函数,然后执行Init()操作,该函数具体的内容如下图和源码所示:

     1 template <typename Dtype>
     2 void Net<Dtype>::Init(const NetParameter& in_param) {
     3   ........//过滤校验参数FilterNet
     4   FilterNet(in_param, &filtered_param);
     5   .........//插入Splits层
     6   InsertSplits(filtered_param, &param);
     7   .......// 构建网络中输入输出存储结构
     8   bottom_vecs_.resize(param.layer_size());
     9   top_vecs_.resize(param.layer_size());
    10   bottom_id_vecs_.resize(param.layer_size());
    11   param_id_vecs_.resize(param.layer_size());
    12   top_id_vecs_.resize(param.layer_size());
    13   bottom_need_backward_.resize(param.layer_size());
    14 
    15   for (int layer_id = 0; layer_id < param.layer_size(); ++layer_id) {
    16    ...//创建层
    17  layers_.push_back(LayerRegistry<Dtype>::CreateLayer(layer_param));
    18     layer_names_.push_back(layer_param.name());
    19     LOG_IF(INFO, Caffe::root_solver())
    20         << "Creating Layer " << layer_param.name();
    21     bool need_backward = false;
    22 
    23     // Figure out this layer's input and output
    24     for (int bottom_id = 0; bottom_id < layer_param.bottom_size();
    25          ++bottom_id) {
    26       const int blob_id = AppendBottom(param, layer_id, bottom_id,
    27                                        &available_blobs, &blob_name_to_idx);
    28 
    29 
    30    ........//创建相关blob
    31     // If the layer specifies that AutoTopBlobs() -> true and the LayerParameter
    32     // specified fewer than the required number (as specified by
    33     // ExactNumTopBlobs() or MinTopBlobs()), allocate them here.
    34     Layer<Dtype>* layer = layers_[layer_id].get();
    35     if (layer->AutoTopBlobs()) {
    36       const int needed_num_top =
    37           std::max(layer->MinTopBlobs(), layer->ExactNumTopBlobs());
    38       for (; num_top < needed_num_top; ++num_top) {
    39         // Add "anonymous" top blobs -- do not modify available_blobs or
    40         // blob_name_to_idx as we don't want these blobs to be usable as input
    41         // to other layers.
    42         AppendTop(param, layer_id, num_top, NULL, NULL);
    43       }
    44     }
    45 
    46 
    47     .....//执行SetUp()
    48     // After this layer is connected, set it up.
    49     layers_[layer_id]->SetUp(bottom_vecs_[layer_id], top_vecs_[layer_id]);
    50     LOG_IF(INFO, Caffe::root_solver())
    51         << "Setting up " << layer_names_[layer_id];
    52     for (int top_id = 0; top_id < top_vecs_[layer_id].size(); ++top_id) {
    53       if (blob_loss_weights_.size() <= top_id_vecs_[layer_id][top_id]) {
    54         blob_loss_weights_.resize(top_id_vecs_[layer_id][top_id] + 1, Dtype(0));
    55       }
    56       blob_loss_weights_[top_id_vecs_[layer_id][top_id]] = layer->loss(top_id);
    57       LOG_IF(INFO, Caffe::root_solver())
    58           << "Top shape: " << top_vecs_[layer_id][top_id]->shape_string();
    59       if (layer->loss(top_id)) {
    60         LOG_IF(INFO, Caffe::root_solver())
    61             << "    with loss weight " << layer->loss(top_id);
    62       }
    63       memory_used_ += top_vecs_[layer_id][top_id]->count();
    64     }
    65     LOG_IF(INFO, Caffe::root_solver())
    66         << "Memory required for data: " << memory_used_ * sizeof(Dtype);
    67     const int param_size = layer_param.param_size();
    68     const int num_param_blobs = layers_[layer_id]->blobs().size();
    69     CHECK_LE(param_size, num_param_blobs)
    70         << "Too many params specified for layer " << 
    Net::Init()

     SetUp是怎么构建的呢?

     1 virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
     2       const vector<Blob<Dtype>*>& top) {}
     3 
     4  void SetUp(const vector<Blob<Dtype>*>& bottom,
     5       const vector<Blob<Dtype>*>& top) {
     6     InitMutex();
     7     CheckBlobCounts(bottom, top);
     8     LayerSetUp(bottom, top);
     9     Reshape(bottom, top);
    10     SetLossWeights(top);
    11   }

     初始化的总体流程大概就是新建一个Solver对象,然后调用Solver类的构造函数,然后在Solver的构造函数中又会新建Net类实例,在Net类的构造函数中又会新建各个layer的实例,一直具体到设置每个Blob,大概就完成了网络初始化的工作了。

     

    Solve

    train函数中CreateSolver()执行完成后,接下来是具体训练过程,执行Solve()函数---->Step()--->结束

    Solve的具体内容和代码:

     1 template <typename Dtype>
     2 void Solver<Dtype>::Solve(const char* resume_file) {
     3   CHECK(Caffe::root_solver());
     4   LOG(INFO) << "Solving " << net_->name();
     5   LOG(INFO) << "Learning Rate Policy: " << param_.lr_policy();
     6 
     7   // For a network that is trained by the solver, no bottom or top vecs
     8   // should be given, and we will just provide dummy vecs.
     9   int start_iter = iter_;
    10   Step(param_.max_iter() - iter_);
    11   
    12   // overridden by setting snapshot_after_train := false
    13   if (param_.snapshot_after_train()
    14       && (!param_.snapshot() || iter_ % param_.snapshot() != 0)) {
    15     Snapshot();
    16   }
    17  
    18   // display loss
    19   if (param_.display() && iter_ % param_.display() == 0) {
    20     int average_loss = this->param_.average_loss();
    21     Dtype loss;
    22     net_->Forward(&loss);
    23 
    24     UpdateSmoothedLoss(loss, start_iter, average_loss);
    25 
    26     
    27   if (param_.test_interval() && iter_ % param_.test_interval() == 0) {
    28     TestAll();
    29   }
    30 }

    然后开始执行Step函数,具体内容和代码:

     1 template <typename Dtype>  
     2 void Solver<Dtype>::Step(int iters)  
     3 {  
     4     // 起始迭代步数  
     5     const int start_iter = iter_;  
     6     // 终止迭代步数  
     7     const int stop_iter = iter_ + iters;  
     8 
     9     // 判断是否已经完成设定步数  
    10     while (iter_ < stop_iter)  
    11     {  
    12         // 将net_中的Bolb梯度参数置为零  
    13         net_->ClearParamDiffs();  
    14 
    15         ...  
    16 
    17         // accumulate the loss and gradient  
    18         Dtype loss = 0;  
    19         for (int i = 0; i < param_.iter_size(); ++i)  
    20         {  
    21             // 正向传导和反向传导,并计算loss  
    22             loss += net_->ForwardBackward();  
    23         }  
    24         loss /= param_.iter_size();  
    25 
    26         // 为了输出结果平滑,将临近的average_loss个loss数值进行平均,存储在成员变量smoothed_loss_中  
    27         UpdateSmoothedLoss(loss, start_iter, average_loss);  
    28 
    29         // BP算法更新权重  
    30         ApplyUpdate();  
    31 
    32         // Increment the internal iter_ counter -- its value should always indicate  
    33         // the number of times the weights have been updated.  
    34         ++iter_;  
    35     }  
    36 }  

    while循环中先调用了网络类Net::ForwardBackward()成员函数进行正向传导和反向传导,并计算loss

    1 Dtype ForwardBackward() {
    2     Dtype loss;
    3     //正向传导
    4     Forward(&loss);
    5     //反向传导
    6     Backward();
    7     return loss;
    8   }

    而Fordward函数中调用了ForwardFromTo,而FordwardFromTo又调用了每个layer的Fordward。反向传导函数Backward()调用了BackwardFromTo(int start, int end)函数。正向传导和反向传导结束后,再调用SGDSolver::ApplyUpdate()成员函数进行权重更新。

    • ForwardBackward:按顺序调用了Forward和Backward。
    • ForwardFromTo(int start, int end):执行从start层到end层的前向传递,采用简单的for循环调用。,forward只要计算损失loss
    • BackwardFromTo(int start, int end):和前面的ForwardFromTo函数类似,调用从start层到end层的反向传递。backward主要根据loss来计算梯度,caffe通过自动求导并反向组合每一层的梯度来计算整个网络的梯度。
    • ToProto函数完成网络的序列化到文件,循环调用了每个层的ToProto函数
     1 template <typename Dtype>  
     2 void SGDSolver<Dtype>::ApplyUpdate()  
     3 {  
     4     // 获取当前学习速率  
     5     Dtype rate = GetLearningRate();  
     6     if (this->param_.display() && this->iter_ % this->param_.display() == 0)  
     7     {  
     8         LOG(INFO) << "Iteration " << this->iter_ << ", lr = " << rate;  
     9     }  
    10 
    11     // 在计算当前梯度的时候,如果该值超过了阈值clip_gradients,则将梯度直接设置为该阈值  
    12     // 此处阈值设为-1,即不起作用  
    13     ClipGradients();  
    14 
    15     // 逐层更新网络中的可学习层  
    16     for (int param_id = 0; param_id < this->net_->learnable_params().size();  
    17        ++param_id)  
    18     {  
    19         // 归一化  
    20         Normalize(param_id);  
    21         // L2范数正则化添加衰减权重  
    22         Regularize(param_id);  
    23         // 随机梯度下降法计算更新值  
    24         ComputeUpdateValue(param_id, rate);  
    25     }  
    26     // 更新权重  
    27     this->net_->Update();  
    28 } 
    ApplyUpdate

    最后将迭代次数++iter_,继续while循环,直到迭代次数完成。 这就是整个网络的训练过程。 

     

  • 相关阅读:
    javascript关于继承
    javascript组合继承
    javascript创建对象的几种模式
    Angularjs学习笔记6_table1
    Angularjs学习笔记5_form1
    Angularjs学习笔记3_datepicker
    Angularjs学习笔记2_添加删除DOM元素
    Angularjs学习笔记5_scope和$rootScope
    Angularjs学习笔记1_基本技巧
    RabbitMQ基础概念
  • 原文地址:https://www.cnblogs.com/liuzhongfeng/p/7289956.html
Copyright © 2020-2023  润新知