• RabbitMQ 和 Kafka 消息队列选型


    知识概要

    RabbitMQ

    RabbitMQ是一个分布式系统,复杂的路由方案中有效地传递消息

    • 用Erlang编写

    • broker:每个节点运行的服务程序,功能为维护该节点的队列的增删以及转发队列操作请求。

    • master queue:每个队列都分为一个主队列和 n 个镜像队列。

    • mirror queue:镜像队列,作为master queue的备份。在master queue所在节点挂掉之后,系统把mirror queue提升为master queue,负责处理客户端队列操作请求。注意,mirror queue只做镜像,设计目的不是为了承担客户端读写压力。

    图片替换文本

    如上图所示,集群中有两个节点,每个节点上有一个broker,每个broker负责本机上队列的维护,并且borker之间可以互相通信。集群中有两个队列A和B,每个队列都分为master queue和mirror queue(备份)。那么队列上的生产消费怎么实现的呢?

    队列消费

    图片替换文本

    如上图有两个consumer消费队列A,这两个consumer连在了集群的不同机器上。RabbitMQ集群中的任何一个节点都拥有集群上所有队列的元信息,所以连接到集群中的任何一个节点都可以,主要区别在于有的consumer连在master queue所在节点,有的连在非master queue节点上。

    因为mirror queue要和master queue保持一致,故需要同步机制,正因为一致性的限制,导致所有的读写操作都必须都操作在master queue上(想想,为啥读也要从master queue中读?和数据库读写分离是不一样的。),然后由master节点同步操作到mirror queue所在的节点。
    即使consumer连接到了非master queue节点,该consumer的操作也会被路由到master queue所在的节点上,这样才能进行消费。

    队列生产

    图片替换文本

    原理和消费一样,如果连接到非 master queue 节点,则路由过去。

    所以,到这里小伙伴们就可以看到 RabbitMQ的不足:由于master queue单节点,导致性能瓶颈,吞吐量受限。虽然为了提高性能,内部使用了Erlang这个语言实现,但是终究摆脱不了架构设计上的致命缺陷。

    Kafka

    基于“分布式仅附加日志”的思想,其中消息被写入到持久化到磁盘的日志末尾,客户端可以选择从该日志开始读取的位置。

    说实话,Kafka我觉得就是看到了RabbitMQ这个缺陷才设计出的一个改进版,改进的点就是:把一个队列的单一master变成多个master,即一台机器扛不住qps,那么我就用多台机器扛qps,把一个队列的流量均匀分散在多台机器上不就可以了么?注意,多个master之间的数据没有交集,即一条消息要么发送到这个master queue,要么发送到另外一个master queue。

    这里面的每个master queue 在Kafka中叫做Partition,即一个分片。一个队列有多个主分片,每个主分片又有若干副分片做备份,同步机制类似于RabbitMQ。

    如上图,我们省略了不同的queue,假设集群上只有一个queue(Kafka中叫Topic)。每个生产者随机把消息发送到主分片上,之后主分片再同步给副分片。

    队列读取的时候虚拟出一个Group的概念,一个Topic内部的消息,只会路由到同Group内的一个consumer上,同一个Group中的consumer消费的消息是不一样的;Group之间共享一个Topic,看起来就是一个队列的多个拷贝。所以,为了达到多个Group共享一个Topic数据,Kafka并不会像RabbitMQ那样消息消费完毕立马删除,而是必须在后台配置保存日期,即只保存最近一段时间的消息,超过这个时间的消息就会从磁盘删除,这样就保证了在一个时间段内,Topic数据对所有Group可见(这个特性使得Kafka非常适合做一个公司的数据总线)。队列读同样是读主分片,并且为了优化性能,消费者与主分片有一一的对应关系,如果消费者数目大于分片数,则存在某些消费者得不到消息。

    由此可见,Kafka绝对是为了高吞吐量设计的,比如设置分片数为100,那么就有100台机器去扛一个Topic的流量,当然比RabbitMQ的单机性能好。

    消息队列选型对比

  • 相关阅读:
    命令行下的curl使用详解
    升级python版本(从2.4.3到2.6.5)
    vim设置
    php中curl模拟post提交多维数组
    vim折叠设置
    基础算法4——归并排序
    总线类型
    主板分类
    网卡 接口类型
    基础算法3——直接选择排序和堆排序
  • 原文地址:https://www.cnblogs.com/liuyupen/p/14214852.html
Copyright © 2020-2023  润新知