• uva 100 The 3n+1 problem


    The 3n + 1 problem 

     

    Background

    Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

     

    The Problem

    Consider the following algorithm:

      		1. 		 input n

    2. print n

    3. if n = 1 then STOP

    4. if n is odd then tex2html_wrap_inline44

    5. else tex2html_wrap_inline46

    6. GOTO 2

    Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

    It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

    Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-lengthof n. In the example above, the cycle length of 22 is 16.

    For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

     

    The Input

    The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

    You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including iand j.

    You can assume that no operation overflows a 32-bit integer.

     

    The Output

    For each pair of input integers i and j you should output ij, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

     

     

    Sample Input

     

    1 10
    100 200 
    201 210 
    900 1000 

     

    Sample Output

     

    1 10 20 
    100 200 125 
    201 210 89 
    900 1000 174
    
    
    
    
    这道题目注意一点,输入的i,j大小不确定,要判断一下,并且输出的时候要按照原来的顺序输出,我的办法是输入了i和j后,立刻就输出,然后在调换它们的大小,这样就避免了输出的问题。另外,还有一个问题,就是每一次循环中,该更新的变量要或者该初始的变量一定要初始化,比如下面的程序中的max,不是一个小问题,重视,写程序的时候认真一点,之前一定要想一下它初始化了没有。
    拙劣的代码
     1 #include <iostream>
     2 #include <cstdlib>
     3 #include <cstdio>
     4 #include <cstring>
     5 
     6 using namespace std;
     7 
     8 int get(int n)
     9 {
    10     int cnt = 1;
    11     
    12     while (n != 1)
    13     {
    14         if (n % 2)
    15             n = 3 * n + 1;
    16         else
    17             n /= 2;
    18         cnt++;
    19     }
    20     return cnt;
    21 }
    22 
    23 int main(void)
    24 {
    25     int a, b, i, max = 0;
    26 
    27     while (cin >> a >> b)
    28     {
    29         max = 0;
    30         cout << a << ' ' << b << ' ';
    31         int x = a <= b ? a : b;
    32         int y = a + b - x;
    33         for (i = x; i <= y; i++)
    34         {
    35             if (max < get(i))
    36             {
    37                 max = get(i);
    38             }
    39         }
    40         cout << max << endl;
    41     }
    42     
    43     return 0;
    44 }
    
    
    
     
  • 相关阅读:
    git功能速查
    iPad actionsjeet
    iOS开发中集成Reveal
    【转】ios内联函数 inline
    【转】数据存储——APP 缓存数据线程安全问题探讨
    iOS 改变导航栏高度
    ios 闪屏页的设置
    AFNetworking content type not support
    iOS 获取本地文件的各种坑
    iOS UICollectionView 长按移动cell
  • 原文地址:https://www.cnblogs.com/liuxueyang/p/2754746.html
Copyright © 2020-2023  润新知