The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
- Both the left and right subtrees must also be binary search trees.
Given any two nodes in a BST, you are supposed to find their LCA.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
Output Specification:
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
Sample Input:
6 8
6 3 1 2 5 4 8 7
2 5
8 7
1 9
12 -3
0 8
99 99
Sample Output:
LCA of 2 and 5 is 3.
8 is an ancestor of 7.
ERROR: 9 is not found.
ERROR: 12 and -3 are not found.
ERROR: 0 is not found.
ERROR: 99 and 99 are not found.
分析:
法1:遍历输入的序列,找到第一个位于两个数之间的数(BST的性质)
代码:
1 #include <iostream> 2 #include <vector> 3 #include <map> 4 using namespace std; 5 map<int, bool> mp; 6 int main() { 7 int m, n, u, v, a; 8 scanf("%d %d", &m, &n); 9 vector<int> pre(n); 10 for (int i = 0; i < n; i++) { 11 scanf("%d", &pre[i]); 12 mp[pre[i]] = true; 13 } 14 for (int i = 0; i < m; i++) { 15 scanf("%d %d", &u, &v); 16 for(int j = 0; j < n; j++) { 17 a = pre[j]; 18 if ((a >= u && a <= v) || (a >= v && a <= u)) break; 19 } 20 if (mp[u] == false && mp[v] == false) 21 printf("ERROR: %d and %d are not found. ", u, v); 22 else if (mp[u] == false || mp[v] == false) 23 printf("ERROR: %d is not found. ", mp[u] == false ? u : v); 24 else if (a == u || a == v) 25 printf("%d is an ancestor of %d. ", a, a == u ? v : u); 26 else 27 printf("LCA of %d and %d is %d. ", u, v, a); 28 } 29 return 0; 30 } 31 //by liuchuo
法2:
由于前序序列排序之后是中序序列,所以可以根据前序和中序递归求LCA
代码:
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 1e5 + 10; 4 int pre[maxn], in[maxn]; 5 int prenum[maxn], innum[maxn]; 6 map<int, int> vis; 7 int n, m; 8 int a, b; 9 10 int searchroot(int l, int r, int ll, int rr) 11 { 12 int rootpos = innum[pre[l]]; 13 int posa = innum[a], posb = innum[b]; 14 if ((rootpos - posa) * (rootpos - posb) <= 0) 15 return pre[l]; 16 if (rootpos > posa) 17 return searchroot(l + 1, l + rootpos - ll, ll, rootpos - 1); 18 else return searchroot(l + rootpos - ll + 1, r, rootpos + 1, rr); 19 } 20 21 int main() 22 { 23 cin >> m >> n; 24 for (int i = 1; i <= n; i++) 25 scanf("%d", pre + i), vis[pre[i]] = 1, prenum[pre[i]] = i, in[i] = pre[i]; 26 sort(in + 1, in + 1 + n); 27 for (int i = 1; i <= n; i++) 28 innum[in[i]] = i; 29 while (m--) 30 { 31 cin >> a >> b; 32 if (!vis[a] && !vis[b]) printf("ERROR: %d and %d are not found. ", a, b); 33 else if (!vis[a]) printf("ERROR: %d is not found. ", a); 34 else if (!vis[b]) printf("ERROR: %d is not found. ", b); 35 else 36 { 37 int res = searchroot(1, n, 1, n); 38 if (res == a) 39 printf("%d is an ancestor of %d. ", a, b); 40 else if (res == b) 41 printf("%d is an ancestor of %d. ", b, a); 42 else printf("LCA of %d and %d is %d. ", a, b, res); 43 } 44 } 45 }