• 【R统计】多类别的判别


    8.2 某医院研究心电图指标对健康人(1),硬化病患者(2)和冠心病患者(3)的鉴别能力,先训练样本如下。试用距离判别(考虑方差相同与方差不同两种情况)、Bayes判别(考虑方差同和不同两种情况,且先验概率为11/23,7/23,5/23)对数据进行分析。

    原始数据 data.txt如下, 3,4,5,6列为心电图指标,2列为类别

    1	1	8.11	261.01	13.23	7.36
    2	1	9.36	185.39	9.02	5.99
    3	1	9.85	249.58	15.61	6.11
    4	1	2.55	137.13	9.21	4.35
    5	1	6.01	231.34	14.27	8.79
    6	1	9.64	231.38	13.03	8.53
    7	1	4.11	260.25	14.72	10.02
    8	1	8.90	259.91	14.16	9.79
    9	1	7.71	273.84	16.01	8.79
    10	1	7.51	303.59	19.14	8.53
    11	1	8.06	231.03	14.41	6.15
    12	2	6.80	308.90	15.11	8.49
    13	2	8.68	258.69	14.02	7.16
    14	2	5.67	355.54	15.03	9.43
    17	2	3.71	316.32	17.12	8.17
    17	2	5.37	274.57	16.75	9.67
    18	2	9.89	409.42	19.47	10.49
    19	3	5.22	330.34	18.19	9.61
    20	3	4.71	331.47	21.26	13.72
    21	3	4.71	352.50	20.79	11.00
    22	3	3.36	347.31	17.90	11.19
    23	3	8.27	189.56	12.74	6.94
    

    函数distinguish.distance.R

    distinguish.distance<-function
       (TrnX, TrnG, TstX = NULL, var.equal = FALSE){
       if ( is.factor(TrnG) == FALSE){
           mx<-nrow(TrnX); mg<-nrow(TrnG)
           TrnX<-rbind(TrnX, TrnG)
           TrnG<-factor(rep(1:2, c(mx, mg)))
       }
       if (is.null(TstX) == TRUE) TstX<-TrnX
       if (is.vector(TstX) == TRUE)  TstX<-t(as.matrix(TstX))
       else if (is.matrix(TstX) != TRUE)
          TstX<-as.matrix(TstX)
       if (is.matrix(TrnX) != TRUE) TrnX<-as.matrix(TrnX)
    
       nx<-nrow(TstX)
       blong<-matrix(rep(0, nx), nrow=1, dimnames=list("blong", 1:nx))
       g<-length(levels(TrnG))
       mu<-matrix(0, nrow=g, ncol=ncol(TrnX))
       for (i in 1:g)
          mu[i,]<-colMeans(TrnX[TrnG==i,]) 
       D<-matrix(0, nrow=g, ncol=nx)
       if (var.equal == TRUE  || var.equal == T){
          for (i in 1:g)
             D[i,]<- mahalanobis(TstX, mu[i,], var(TrnX))
       }
       else{
          for (i in 1:g)
             D[i,]<- mahalanobis(TstX, mu[i,], var(TrnX[TrnG==i,]))
       }
       for (j in 1:nx){
          dmin<-Inf
          for (i in 1:g)
              if (D[i,j]<dmin){
                 dmin<-D[i,j]; blong[j]<-i
          }
       }
       blong
    }

      

    函数distinguish.bayes.R

    distinguish.bayes<-function
       (TrnX, TrnG, p=rep(1, length(levels(TrnG))), 
        TstX = NULL, var.equal = FALSE){
       if ( is.factor(TrnG) == FALSE){
           mx<-nrow(TrnX); mg<-nrow(TrnG)
           TrnX<-rbind(TrnX, TrnG)
           TrnG<-factor(rep(1:2, c(mx, mg)))
       }
       if (is.null(TstX) == TRUE) TstX<-TrnX
       if (is.vector(TstX) == TRUE)  TstX<-t(as.matrix(TstX))
       else if (is.matrix(TstX) != TRUE)
          TstX<-as.matrix(TstX)
       if (is.matrix(TrnX) != TRUE) TrnX<-as.matrix(TrnX)
    
       nx<-nrow(TstX)
       blong<-matrix(rep(0, nx), nrow=1, dimnames=list("blong", 1:nx))
       g<-length(levels(TrnG))
       mu<-matrix(0, nrow=g, ncol=ncol(TrnX))
       for (i in 1:g)
          mu[i,]<-colMeans(TrnX[TrnG==i,]) 
       D<-matrix(0, nrow=g, ncol=nx)
       if (var.equal == TRUE  || var.equal == T){
          for (i in 1:g){
             d2 <- mahalanobis(TstX, mu[i,], var(TrnX))
             D[i,] <- d2 - 2*log(p[i])
          }
       }
       else{
          for (i in 1:g){
             S<-var(TrnX[TrnG==i,])
             d2 <- mahalanobis(TstX, mu[i,], S)
             D[i,] <- d2 - 2*log(p[i])-log(det(S))
          }
       }
       for (j in 1:nx){
          dmin<-Inf
          for (i in 1:g)
              if (D[i,j]<dmin){
                 dmin<-D[i,j]; blong[j]<-i
          }
       }
       blong
    }
    

      

    运行脚本

    data <- read.table("data.txt");
    X <- data[,3:6];
    G <- factor(data[,2]);
    
    source("distinguish.distance.R");
    distinguish.distance(X,G);
    #      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
    #blong 2 1 1 1 1 1 1 1 1  1  1  2  1  2  2  1  2  2  3  3  3  3
    distinguish.distance(X,G,var.equal=TRUE);
    #      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
    #blong 1 1 1 1 1 1 3 1 1  3  1  2  1  2  2  3  2  2  3  3  3  1
    
    source("distinguish.bayes.R");
    distinguish.bayes(X,G, p=c(rep(11/23,11),rep(7/23,7),rep(5/23,5)));
    #      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
    #blong 2 1 1 1 1 1 1 1 1  1  1  2  1  2  2  1  2  2  3  3  3  3
    distinguish.bayes(X,G, p=c(rep(11/23,11),rep(7/23,7),rep(5/23,5)),var.equal=TRUE);
    #      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
    #blong 1 1 1 1 1 1 3 1 1  3  1  2  1  2  2  3  2  2  3  3  3  1
    

     

    博文源代码和习题均来自于教材《统计建模与R软件》(ISBN:9787302143666,作者:薛毅)。 

  • 相关阅读:
    postgresql创建表
    PG查询数据库大小
    unicode字符集范围
    删除mysql数据中的空格和换行符
    无法生成模型:“System.Data.StrongTypingException: 表“TableDetails”中列“IsPrimaryKey”的值为 DBNull
    ubuntu 16.04 64位 coreseek
    linux wps 缺失字体问题解决
    误删除/var/lib/dpkg解决办法
    Microsoft Office CVE-2017-8570
    mariadb ==> 开机自启动
  • 原文地址:https://www.cnblogs.com/liulele/p/9037451.html
Copyright © 2020-2023  润新知