• C#泛型编程


    转自--KiddLee

    泛型:通过参数化类型来实现在同一份代码上操作多种数据类型。利用“参数化类型”将类型抽象化,从而实现灵活的复用。

    例子代码:

    View Code
     1 class Program
    2 {
    3 static void Main(string[] args)
    4 {
    5 int obj = 2;
    6 Test<int> test = new Test<int>(obj);
    7 Console.WriteLine("int:" + test.obj);
    8 string obj2 = "hello world";
    9 Test<string> test1 = new Test<string>(obj2);
    10 Console.WriteLine("String:" + test1.obj);
    11 Console.Read();
    12 }
    13 }
    14
    15 class Test<T>
    16 {
    17 public T obj;
    18 public Test(T obj)
    19 {
    20 this.obj = obj;
    21 }
    22 }

     

    输出结果是:

    int:2

    String:hello world

     

    程序分析:

    1、  Test是一个泛型类。T是要实例化的范型类型如果T被实例化为int型,那么成员变量obj就是int型的,如果T被实例化为string型,那么obj就是string类型的。

    2、  根据不同的类型,上面的程序显示出不同的值。

    C#泛型机制:

    C#泛型能力有CLR在运行时支持:C#泛型代码在编译为IL代码和元数据时,采用特殊的占位符来表示范型类型,并用专有的IL指令支持泛型操作。而真正的泛型实例化工作以“on-demand”的方式,发生在JIT编译时。

    看看刚才的代码中Main函数的元数据:

    View Code
     1 .method private hidebysig static void  Main(string[] args) cil managed
    2 {
    3 .entrypoint
    4 // Code size 79 (0x4f)
    5 .maxstack 2
    6 .locals init ([0] int32 obj,
    7 [1] class CSharpStudy1.Test`1<int32> test,
    8 [2] string obj2,
    9 [3] class CSharpStudy1.Test`1<string> test1)
    10 IL_0000: nop
    11 IL_0001: ldc.i4.2
    12 IL_0002: stloc.0
    13 IL_0003: ldloc.0
    14 IL_0004: newobj instance void class CSharpStudy1.Test`1<int32>::.ctor(!0)
    15 IL_0009: stloc.1
    16 IL_000a: ldstr "int:"
    17 IL_000f: ldloc.1
    18 IL_0010: ldfld !0 class CSharpStudy1.Test`1<int32>::obj
    19 IL_0015: box [mscorlib]System.Int32
    20 IL_001a: call string [mscorlib]System.String::Concat(object,
    21 object)
    22 IL_001f: call void [mscorlib]System.Console::WriteLine(string)
    23 IL_0024: nop
    24 IL_0025: ldstr "hello world"
    25 IL_002a: stloc.2
    26 IL_002b: ldloc.2
    27 IL_002c: newobj instance void class CSharpStudy1.Test`1<string>::.ctor(!0)
    28 IL_0031: stloc.3
    29 IL_0032: ldstr "String:"
    30 IL_0037: ldloc.3
    31 IL_0038: ldfld !0 class CSharpStudy1.Test`1<string>::obj
    32 IL_003d: call string [mscorlib]System.String::Concat(string,
    33 string)
    34 IL_0042: call void [mscorlib]System.Console::WriteLine(string)
    35 IL_0047: nop
    36 IL_0048: call int32 [mscorlib]System.Console::Read()
    37 IL_004d: pop
    38 IL_004e: ret
    39 } // end of method Program::Main

    再来看看Test类中构造函数的元数据:

    View Code
     1 .method public hidebysig specialname rtspecialname
    2 instance void .ctor(!T obj) cil managed
    3 {
    4 // Code size 17 (0x11)
    5 .maxstack 8
    6 IL_0000: ldarg.0
    7 IL_0001: call instance void [mscorlib]System.Object::.ctor()
    8 IL_0006: nop
    9 IL_0007: nop
    10 IL_0008: ldarg.0
    11 IL_0009: ldarg.1
    12 IL_000a: stfld !0 class ConsoleCSharpTest1.Test`1<!T>::obj
    13 IL_000f: nop
    14 IL_0010: ret
    15 } // end of method Test`1::.ctor

    1、第一轮编译时,编译器只为Test<T>类型产生“泛型版”的IL代码与元数据——并不进行泛型的实例化,T在中间只充当占位符。例如:Test类型元数据中显示的<!T>

    2、JIT编译时,当JIT编译器第一次遇到Test<int>时,将用int替换“范型版”IL代码与元数据中的T——进行泛型类型的实例化。例如:Main函数中显示的<int>

    3、CLR为所有类型参数为“引用类型”的泛型类型产生同一份代码;但是如果类型参数为“值类型”,对每一个不同的“值类型”,CLR将为其产生一份独立的代码。因为实例化一个引用类型的泛型,它在内存中分配的大小是一样的,但是当实例化一个值类型的时候,在内存中分配的大小是不一样的。

     

    C#泛型特点:

    1、如果实例化泛型类型的参数相同,那么JIT编辑器会重复使用该类型,因此C#的动态泛型能力避免了C++静态模板可能导致的代码膨胀的问题。

    2、C#泛型类型携带有丰富的元数据,因此C#的泛型类型可以应用于强大的反射技术。

    3、C#的泛型采用“基类、接口、构造器,值类型/引用类型”的约束方式来实现对类型参数的“显示约束”,提高了类型安全的同时,也丧失了C++模板基于“签名”的隐式约束所具有的高灵活性

    C#泛型继承:

    C#除了可以单独声明泛型类型(包括类与结构)外,也可以在基类中包含泛型类型的声明。但基类如果是泛型类,它的类型要么以实例化,要么来源于子类(同样是泛型类型)声明的类型参数,看如下类型

    class C<U,V>

    class D:C<string,int>

    class E<U,V>:C<U,V>

    class F<U,V>:C<string,int>

    class G:C<U,V>  //非法

    E类型为C类型提供了U、V,也就是上面说的来源于子类

    F类型继承于C<string,int>,个人认为可以看成F继承一个非泛型的类

    G类型为非法的,因为G类型不是泛型,C是泛型,G无法给C提供泛型的实例化

    泛型类型的成员:

    泛型类型的成员可以使用泛型类型声明中的类型参数。但类型参数如果没有任何约束,则只能在该类型上使用从System.Object继承的公有成员。如下图:

    泛型接口:

    泛型接口的类型参数要么已实例化,要么来源于实现类声明的类型参数。

    泛型委托:

    泛型委托支持在委托返回值和参数上应用参数类型,这些参数类型同样可以附带合法的约束。

    View Code
     1 delegate bool MyDelegate<T>(T value);
    2 class MyClass
    3 {
    4 static bool F(int i){...}
    5 static bool G(string s){...}
    6 static void Main()
    7 {
    8 MyDelegate<string> p2 = G;
    9 MyDelegate<int> p1 = new MyDelegate<int>(F);
    10 }
    11 }

     

    泛型方法:

    1、C#泛型机制只支持“在方法声明上包含类型参数”——即泛型方法。

    2、C#泛型机制不支持在除方法外的其他成员(包括属性、事件、索引器、构造器、析构器)的声明上包含类型参数,但这些成员本身可以包含在泛型类型中,并使用泛型类型的类型参数。

    3、泛型方法既可以包含在泛型类型中,也可以包含在非泛型类型中。

    泛型方法声明:

    1 public static int FunctionName<T>(T value){...}

    泛型方法的重载:

    1 public void Function1<T>(T a);
    2 public void Function1<U>(U a);

    这样是不能构成泛型方法的重载。因为编译器无法确定泛型类型TU是否不同,也就无法确定这两个方法是否不同。

    1 public void Function1<T>(int x);
    2 public void Function1(int x);

    这样可以构成重载。

    1 public void Function1<T>(T t) where T:A;
    2 public void Function1<T>(T t) where T:B;

    这样不能构成泛型方法的重载。因为编译器无法确定约束条件中的AB是否不同,也就无法确定这两个方法是否不同。

    泛型方法重写:

    在重写的过程中,抽象类中的抽象方法的约束是被默认继承的。

     1 abstract class Base
    2 {
    3 public abstract T F<T,U>(T t,U u) where U:T;
    4 public abstract T G<T>(T t) where T:IComparable;
    5 }
    6
    7 class MyClass:Base
    8 {
    9 public override X F<X,Y>(X x,Y y){...}
    10 public override T G<T>(T t) where T:IComparable{}
    11 }

    对于MyClass中两个重写的方法来说

    F方法是合法的,约束被默认继承

    G方法是非法的,指定任何约束都是多余的

    泛型约束:

    1、C#泛型要求对“所有泛型类型或泛型方法的类型参数”的任何假定,都要基于“显式的约束”,以维护C#所要求的类型安全。

    2、“显式约束”由where子句表达,可以指定“基类约束”,“接口约束”,“构造器约束”,“值类型/引用类型约束”共四种约束。

    3、“显式约束”并非必须,如果没有指定“显式约束”,范型类型参数将只能访问System.Object类型中的公有方法。例如:在开始的例子中,定义的那个obj成员变量。比如我们在开始的那个例子中加入一个Test1类,在它当中定义两个公共方法Func1、Func2,如下图:

    下面就开始分析这些约束:

    1.基类约束:

    View Code
     1 class A
    2 {
    3 public void Func1(){ }
    4 }
    5
    6 class B
    7 {
    8 public void Func2(){ }
    9 }
    10
    11 class C<S, T> where S : A where T : B
    12 {
    13 public C(S s,T t)
    14 {
    15 //S的变量可以调用Func1方法
    16 s.Func1();
    17 //T的变量可以调用Func2方法
    18 t.Func2();
    19 }
    20 }

    2.接口约束:

    View Code
     1 interface IA<T>
    2 {
    3 T Func1();
    4 }
    5
    6 interface IB
    7 {
    8 void Func2();
    9 }
    10
    11 interface IC<T>
    12 {
    13 T Func3();
    14 }
    15
    16 class MyClass<T, V> where T : IA<T> where V : IB, IC<V>
    17 {
    18 public MyClass(T t,V v)
    19 {
    20 //T的对象可以调用Func1
    21 t.Func1();
    22 //V的对象可以调用Func2和Func3
    23 v.Func2();
    24 v.Func3();
    25 }
    26 }

    3.构造器约束:

    View Code
     1 class A
    2 {
    3 public A(){ }
    4 }
    5
    6 class B
    7 {
    8 public B(int i){ }
    9 }
    10
    11 class C<T> where T : new()
    12 {
    13 T t;
    14 public C()
    15 {
    16 t = new T();
    17 }
    18 }
    19
    20 class D
    21 {
    22 public void Func()
    23 {
    24 C<A> c = new C<A>();
    25 C<B> d = new C<B>();
    26 }
    27 }

    d对象在编译时报错:The type B must have a public parameterless constructor in order to use it as parameter 'T' in the generic type or method C<T>

    注意:C#现在只支持无参的构造器约束

    此时由于我们为B类型写入了一个有参构造器,使得系统不会再为B自动创建一个无参的构造器,但是如果我们将B类型中加一个无参构造器,那么对象d的实例化就不会报错了。B类型定义如下:

    1 class B
    2 {
    3 public B()
    4 { }
    5 public B(int i)
    6 { }
    7 }

    值类型/引用类型:

    1 public struct A { }
    2 public class B { }
    3
    4 public class C<T> where T : struct
    5 { }
    6
    7 C<A> c1 = new C<A>();
    8 C<B> c2 = new C<B>();

    c2对象在编译时报错:The type 'B' must be a non-nullable value type in order to use it as parameter 'T' in the generic type or methor 'C<T>'

    总结:

    1、C#的泛型能力由CLR在运行时支持,它既不同于C++在编译时所支持的静态模板,也不同于Java在编译器层面使用“擦拭法”支持的简单的泛型。

    2、C#的泛型支持包括类、结构、接口、委托四种泛型类型,以及方法成员。

    3、C#的泛型采用“基类,接口,构造器,值类型/引用类型”的约束方式来实现对类型参数的“显式约束”,它不支持C++模板那样的基于签名的隐式约束。


















     



  • 相关阅读:
    [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence
    备忘录模式之C++实现
    leecode 题解 || Merge k Sorted Lists 问题
    数学三大危机
    singlefile.py
    Data Url生成工具之HTML5 FileReader实现
    算法题:打印1到最大的n位数
    java.lang.NoClassDefFoundError: org/apache/commons/lang/xwork/StringUtils
    hdu 1181 变形课
    postgis经常使用函数介绍(一)
  • 原文地址:https://www.cnblogs.com/liukemng/p/2304492.html
Copyright © 2020-2023  润新知