• Java_JDK_HashMap


    (二)HashMap

    需要注意的无非几点:

    • 是什么结构,如何存储的?
    • 如何加入元素?既然是hashMap,那么是如何计算hashcode的呢?遇到冲突又是如何解决的呢?
    • 如何删除元素?
    • 当容量不够时是如何扩容的?

    1. 总体的存储结构为一个Node类型的数组transient Node<K,V>[] table;

    其中,Node节点结构为:

       static class Node<K,V> implements Map.Entry<K,V> {
            final int hash;
            final K key;
            V value;
            Node<K,V> next;
    
            Node(int hash, K key, V value, Node<K,V> next) {
                this.hash = hash;
                this.key = key;
                this.value = value;
                this.next = next;
            }
    }

    可以看到,Node节点中有next指针,说明数组内部是一个指针,指向下一个元素。

    故整个HashMap的存储结构如下图所示:

    2.put()方法:

     public V put(K key, V value) {
    
                return putVal(hash(key), key, value, false, true); //将具体的实现封装在下面的函数中
    
            }
    
    
         /**
             * Implements Map.put and related methods
             *
             * @param hash hash for key
             * @param key the key
             * @param value the value to put
             * @param onlyIfAbsent if true, don't change existing value
             * @param evict if false, the table is in creation mode.
             * @return previous value, or null if none
             */
            final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                           boolean evict) {
                Node<K,V>[] tab; Node<K,V> p; int n, i; 
                if ((tab = table) == null || (n = tab.length) == 0) //如果是空表
                    n = (tab = resize()).length;
                if ((p = tab[i = (n - 1) & hash]) == null) //如果(n - 1) & hash处还没有元素(不会产生冲突),则直接放入即可
                    tab[i] = newNode(hash, key, value, null);
                else { //否则,产生了冲突,且p记录了应该放入的位置
                    Node<K,V> e; K k;
                    if (p.hash == hash &&
                        ((k = p.key) == key || (key != null && key.equals(k)))) //如果确实产生了冲突
                        e = p; //用e记录冲突位置
                    else if (p instanceof TreeNode) //p是TreeNode ? 不是太理解,先放这里吧。。
                        e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
                    else { 
                        for (int binCount = 0; ; ++binCount) {
                            if ((e = p.next) == null) { //如果就放了一个元素,即链表位置为空
                                p.next = newNode(hash, key, value, null);
                                if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 
                                    treeifyBin(tab, hash);
                                break;
                            }
                            if (e.hash == hash &&
                                ((k = e.key) == key || (key != null && key.equals(k))))
                                break;
                            p = e;
                        }
                    }
                    if (e != null) { // existing mapping for key
                        V oldValue = e.value; 
                        if (!onlyIfAbsent || oldValue == null)
                            e.value = value; //是否可以直接替换
                        afterNodeAccess(e);
                        return oldValue;
                    }
                }
                ++modCount; //修改次数加一
                if (++size > threshold)
                    resize(); //超出了限定容量,则扩容
                afterNodeInsertion(evict);
                return null;
            }

    可以看到,其中有很多细节处没有吃透,先有个大概的认识,与后面的分析融汇贯通。

     3. resize()函数:扩容

    下面我们来分析一下这个长长的扩容函数:

        /**
         * Initializes or doubles table size.  If null, allocates in 初始化或者对原来容量扩大两倍
         * accord with initial capacity target held in field threshold.
         * Otherwise, because we are using power-of-two expansion, the
         * elements from each bin must either stay at same index, or move
         * with a power of two offset in the new table.
         *
         * @return the table
         */
        final Node<K,V>[] resize() {
            Node<K,V>[] oldTab = table;
            int oldCap = (oldTab == null) ? 0 : oldTab.length;
            int oldThr = threshold;
            int newCap, newThr = 0;
            if (oldCap > 0) { //原来HashMap不空
                if (oldCap >= MAXIMUM_CAPACITY) { //如果原来map的容量就很大,则直接设置到Integer的最大值
                    threshold = Integer.MAX_VALUE;
                    return oldTab;
                }
                else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                         oldCap >= DEFAULT_INITIAL_CAPACITY)  //如果扩大一倍的新容量仍小于最大容量 && 原始容量大于默认值(16)
                    newThr = oldThr << 1; // double threshold,则让容量扩大一倍
            }
            else if (oldThr > 0) // initial capacity was placed in threshold
                newCap = oldThr;
            else {               
                // zero initial threshold signifies using defaults,若oldCap = 0 && oldThr = 0,则用默认值对map初始化
                newCap = DEFAULT_INITIAL_CAPACITY;
                newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
            }
            if (newThr == 0) {//如果上面的初始化没有成功
                float ft = (float)newCap * loadFactor; //loadfactor为负载因子,初始为0.75
                newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                          (int)ft : Integer.MAX_VALUE); //初始化为0.75倍
            }
            threshold = newThr;
            @SuppressWarnings({"rawtypes","unchecked"})
                Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
            table = newTab;
            if (oldTab != null) {
                for (int j = 0; j < oldCap; ++j) {
                    Node<K,V> e;
                    if ((e = oldTab[j]) != null) {
                        oldTab[j] = null; //置为null,方便GC进行回收
                        if (e.next == null) //如果j处只有这一个元素(链表长度为1)
                            newTab[e.hash & (newCap - 1)] = e;//将e放入新的位置,为何这样计算呢?
                        else if (e instanceof TreeNode) 
                            ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                        else { // preserve order 如果j处是一个链表,则按照原来的次序进行拷贝
                            Node<K,V> loHead = null, loTail = null;
                            Node<K,V> hiHead = null, hiTail = null;
                            Node<K,V> next;
                            do {
                                next = e.next;
                                if ((e.hash & oldCap) == 0) {
                                    if (loTail == null)
                                        loHead = e;
                                    else
                                        loTail.next = e;
                                    loTail = e;
                                }
                                else {
                                    if (hiTail == null)
                                        hiHead = e;
                                    else
                                        hiTail.next = e;
                                    hiTail = e;
                                }
                            } while ((e = next) != null);
                            if (loTail != null) {
                                loTail.next = null;
                                newTab[j] = loHead;
                            }
                            if (hiTail != null) {
                                hiTail.next = null;
                                newTab[j + oldCap] = hiHead;
                            }
                        }
                    }
                }
            }
            return newTab;
        }

     4. delete函数

    /**
     * Implements Map.remove and related methods
     *
     * @param hash hash for key
     * @param key the key
     * @param value the value to match if matchValue, else ignored
     * @param matchValue if true only remove if value is equal
     * @param movable if false do not move other nodes while removing
     * @return the node, or null if none
     */
    final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) {
        Node<K,V>[] tab; Node<K,V> p; int n, index;
        
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (p = tab[index = (n - 1) & hash]) != null) { //如果map不为空
            Node<K,V> node = null, e; K k; V v;
            //首先寻找要删除的元素,用node记录
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                node = p; //p/node 就是要删除的元素
            else if ((e = p.next) != null) {
                if (p instanceof TreeNode)
                    node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
                else { //该位置有很多元素,则找到要删除的那一个
                    do {
                        if (e.hash == hash &&
                            ((k = e.key) == key ||
                             (key != null && key.equals(k)))) {
                            node = e;
                            break;
                        }
                        p = e;
                    } while ((e = e.next) != null);
                }
            }
            //找到用node记录的要删除的元素之后,进行删除操作
            if (node != null && (!matchValue || (v = node.value) == value ||
                                 (value != null && value.equals(v)))) {
                if (node instanceof TreeNode)
                    ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
                else if (node == p) //如果p是要删除的节点,直接指向下一个元素或指向null
                    tab[index] = node.next;
                else //如果要删除的node在p的一个链表中,则让next指针指向node.next即可
                    p.next = node.next;
                ++modCount; //修改次数+1
                --size; //size - 1
                afterNodeRemoval(node);
                return node;
            }
        }
        return null;
    }

    5. hashCode

    使用了Object类中的hashCode方法,每个对象都会有自己的hashCode, 同时,jdk有自己的根据key值计算hash的方法:

       /**
         * Computes key.hashCode() and spreads (XORs) higher bits of hash
         * to lower.  Because the table uses power-of-two masking, sets of
         * hashes that vary only in bits above the current mask will
         * always collide. (Among known examples are sets of Float keys
         * holding consecutive whole numbers in small tables.)  So we
         * apply a transform that spreads the impact of higher bits
         * downward. There is a tradeoff between speed, utility, and
         * quality of bit-spreading. Because many common sets of hashes
         * are already reasonably distributed (so don't benefit from
         * spreading), and because we use trees to handle large sets of
         * collisions in bins, we just XOR some shifted bits in the
         * cheapest possible way to reduce systematic lossage, as well as
         * to incorporate impact of the highest bits that would otherwise
         * never be used in index calculations because of table bounds.
         */
        static final int hash(Object key) {
            int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
        }
  • 相关阅读:
    ME05 黑匣子思维
    F06 《生活中的投资学》摘要(完)
    ME03 关于运气要知道的几个真相
    ME02 做一个合格的父母To be good enough parent
    ME02 认知之2017罗胖跨年演讲
    F03 金融学第三定律 风险共担
    F05 敏锐的生活,让跟多公司给你免单
    ML04 Accord 调用实现机器算法的套路
    D02 TED Elon Mulsk The future we're building — and boring
    ML03 利用Accord 进行机器学习的第一个小例子
  • 原文地址:https://www.cnblogs.com/little-YTMM/p/5571268.html
Copyright © 2020-2023  润新知