Description:
给你一棵n个点的树,编号1~n。每个点可以是黑色,可以是白色。初始时所有点都是黑色。下面有两种操作请你操作给我们看:
0 u:询问有多少个节点v满足路径u到v上所有节点(包括)都拥有相同的颜色
1 u:翻转u的颜色
Hint:
(nle 10^5)
Solution:
这题我一开始用树剖写,然后随机数据跑得飞快,交上去被菊花图卡飞23333333
树剖正解,详见https://www.cnblogs.com/ivorysi/p/10103010.html
但是.......树剖写法太毒瘤了!!!
所以这里介绍的是LCT做法
不得不说比较巧妙
考虑用2颗LCT维护两种颜色的联通块
并且把点的颜色存到边上
每次修改就在一颗LCT上断边,另一颗LCT上连这条边
同时LCT维护子树信息,询问直接搞就行了
我的LCT还是太菜了,看了好久才看懂
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e6+5;
int n,m,cnt=1;
int f[mxn],hd[mxn],col[mxn];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
struct ed {
int to,nxt;
}t[mxn<<1];
inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
}
struct LCT {
int fa[mxn],s[mxn],sz[mxn],ch[mxn][2];
void push_up(int x) {
sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+s[x]+1;
}
int isnotrt(int x) {
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
}
void rotate(int x) {
int y=fa[x],z=fa[y],tp=ch[y][1]==x;
if(isnotrt(y)) ch[z][ch[z][1]==y]=x; fa[x]=z;
ch[y][tp]=ch[x][tp^1]; fa[ch[x][tp^1]]=y;
ch[x][tp^1]=y; fa[y]=x;
push_up(y),push_up(x);
}
void splay(int x) {
while(isnotrt(x)) {
int y=fa[x],z=fa[y];
if(isnotrt(y))
(ch[y][1]==x)^(ch[z][1]==y)?rotate(x):rotate(y);
rotate(x);
}
}
void access(int x) {
for(int y=0;x;x=fa[y=x]) {
splay(x);
s[x]+=sz[ch[x][1]];
ch[x][1]=y;
s[x]-=sz[ch[x][1]];
}
}
int findrt(int x) {
access(x); splay(x);
while(ch[x][0]) x=ch[x][0];
splay(x); return x;
}
void link(int x) {
splay(x); fa[x]=f[x];
int y=f[x]; access(y); splay(y);
s[y]+=sz[x]; sz[y]+=sz[x];
}
void cut(int x) {
access(x); splay(x);
ch[x][0]=fa[ch[x][0]]=0;
push_up(x);
}
}lct[2];
void dfs(int u,int fa) {
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); f[v]=u; lct[0].link(v);
}
}
int main()
{
n=read(); int u,v;
for(int i=1;i<=n+1;++i) lct[0].sz[i]=lct[1].sz[i]=1; //千万不要忘记赋初值
for(int i=1;i<n;++i) {
u=read(); v=read();
add(u,v); add(v,u);
}
dfs(1,0); f[1]=n+1; //1节点也必须有父亲
lct[0].link(1); m=read();
for(int i=1;i<=m;++i) {
u=read(); v=read();
if(u==1) lct[col[v]].cut(v),lct[col[v]^=1].link(v);
else {
int tp=lct[col[v]].findrt(v);
printf("%d
",lct[col[v]].sz[lct[col[v]].ch[tp][1]]);
}
}
return 0;
}