• mysql读写分离


    好久没有写过博客了,趁着年假还有一天,把去年项目所运用的读写分离在这里概述一下及其注意点,以防以后项目再有使用到;

    准备工作

    1 开发环境:window,idea,maven,spring boot,mybatis,druid(淘宝数据库连接池)

    2 数据库服务器:linux,mysql master(192.168.203.135),mysql salve(192.168.203.139)

    3 读写分离之前必须先做好数据库的主从复制,关于主从复制不是该篇幅的主要叙述重点,关于主从复制读者可以自行google或者百度,教程基本都是一样,可行

     

    注意以下几点:
    a:做主从复制时,首先确定两台服务器的mysql没任何自定义库(否则只可以配置完后之前的东西没法同步,或者两个库都有完全相同的库应该也是可以同步)
    b:server_id必须配置不一样
    c:防火墙不能把mysql服务端口给拦截了(默认3306)
    d:确保两台mysql可以相互访问
    e:重置master,slave。Reset master;reset slave;开启关闭slave,start slave;stop slave;
    f:主DB server和从DB server数据库的版本一致

    4 读写分离方式:

      4-1 基于程序代码内部实现: 在代码中根据select 、insert进行路由分类,这类方法也是目前生产环境下应用最广泛的。优点是性能较好,因为程序在代码中实现,不需要增加额外的硬件开支,缺点是需要开发人员来实现,运维人员无从下手。

      4-2 基于中间代理层实现: 代理一般介于应用服务器和数据库服务器之间,代理数据库服务器接收到应用服务器的请求后根据判断后转发到,后端数据库,有以下代表性的程序。

     本文基于两种方式的叙述:

    基于应用层代码实现方式(内容都是通过代码体现,必要的说明存在代码中)

    1 配置pom.xml,导入需要的jar包

      

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.lishun</groupId>
        <artifactId>mysql_master_salve</artifactId>
        <version>0.0.1-SNAPSHOT</version>
        <packaging>jar</packaging>
    
        <name>mysql_master_salve</name>
        <description>Demo project for Spring Boot</description>
    
        <parent>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-parent</artifactId>
            <version>1.5.10.RELEASE</version>
            <relativePath/> <!-- lookup parent from repository -->
        </parent>
    
        <properties>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
            <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
            <java.version>1.8</java.version>
        </properties>
    
        <dependencies>
            <dependency>
                <groupId>org.mybatis.spring.boot</groupId>
                <artifactId>mybatis-spring-boot-starter</artifactId>
                <version>1.3.1</version>
            </dependency>
    
            <dependency>
                <groupId>mysql</groupId>
                <artifactId>mysql-connector-java</artifactId>
                <scope>runtime</scope>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-test</artifactId>
                <scope>test</scope>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-web</artifactId>
                <version>RELEASE</version>
            </dependency>
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>druid</artifactId>
                <version>1.0.18</version>
            </dependency>
            <dependency>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-starter-aop</artifactId>
            </dependency>
        </dependencies>
    
        <build>
            <plugins>
                <plugin>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-maven-plugin</artifactId>
                </plugin>
                <plugin>
                    <groupId>org.mybatis.generator</groupId>
                    <artifactId>mybatis-generator-maven-plugin</artifactId>
                    <version>1.3.2</version>
                    <dependencies>
                        <dependency>
                            <groupId>mysql</groupId>
                            <artifactId>mysql-connector-java</artifactId>
                            <version>5.1.43</version>
                        </dependency>
                    </dependencies>
                    <configuration>
                        <overwrite>true</overwrite>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    
    
    </project>

    2 配置application.properties

    server.port=9022
    #mybatis配置*mapper.xml文件和实体别名
    mybatis.mapper-locations=classpath:mapper/*.xml
    mybatis.type-aliases-package=com.lishun.entity
    
    spring.datasource.driver-class-name=com.mysql.jdbc.Driver
    spring.datasource.password=123456
    spring.datasource.username=root
    
    #写节点
    spring.datasource.master.url=jdbc:mysql://192.168.203.135:3306/worldmap
    #两个个读节点(为了方便测试这里用的是同一个服务器数据库,生产环境应该不使用)
    spring.datasource.salve1.url=jdbc:mysql://192.168.203.139:3306/worldmap
    spring.datasource.salve2.url=jdbc:mysql://192.168.203.139:3306/worldmap
    
    # druid 连接池 Setting
    # 初始化大小,最小,最大
    spring.datasource.type=com.alibaba.druid.pool.DruidDataSource
    spring.datasource.initialSize=5
    spring.datasource.minIdle=5
    spring.datasource.maxActive=20
    # 配置获取连接等待超时的时间
    spring.datasource.maxWait=60000
    # 配置间隔多久才进行一次检测,检测需要关闭的空闲连接,单位是毫秒
    spring.datasource.timeBetweenEvictionRunsMillis=60000
    # 配置一个连接在池中最小生存的时间,单位是毫秒
    spring.datasource.minEvictableIdleTimeMillis=300000
    spring.datasource.validationQuery=SELECT 1 FROM rscipc_sys_user
    spring.datasource.testWhileIdle=true
    spring.datasource.testOnBorrow=false
    spring.datasource.testOnReturn=false
    # 打开PSCache,并且指定每个连接上PSCache的大小
    spring.datasource.poolPreparedStatements=true
    spring.datasource.maxPoolPreparedStatementPerConnectionSize=20
    # 配置监控统计拦截的filters,去掉后监控界面sql无法统计,'wall'用于防火墙
    spring.datasource.filters=stat,wall,log4j
    # 通过connectProperties属性来打开mergeSql功能;慢SQL记录
    spring.datasource.connectionProperties=druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
    spring.datasource.logSlowSql=true
    #End
    

    3 启动类(注意:其他需要spring管理的bean(service,config等)必须放在该启动类的子包下,不然会扫描不到bean,导致注入失败)

    @SpringBootApplication
    @MapperScan("com.lishun.mapper") //!!!!!! 注意:扫描所有mapper
    public class MysqlMasterSalveApplication {
    	public static void main(String[] args) {
    		SpringApplication.run(MysqlMasterSalveApplication.class, args);
    	}
    }
    

    4 动态数据源  DynamicDataSource

      

    /**
     * @author lishun
     * @Description:动态数据源, 继承AbstractRoutingDataSource
     * @date 2017/8/9
     */
    public class DynamicDataSource extends AbstractRoutingDataSource {
    	public static final Logger log = LoggerFactory.getLogger(DynamicDataSource.class);
    
    	/**
    	 * 默认数据源
    	 */
    	public static final String DEFAULT_DS = "read_ds";
    	private static final ThreadLocal<String> contextHolder = new ThreadLocal<>();
    	public static void setDB(String dbType) {// 设置数据源名
    		log.info("切换到{}数据源", dbType);
    		contextHolder.set(dbType);
    	}
    
    	public static void clearDB() {
    		contextHolder.remove();
    	}// 清除数据源名
    	@Override
    	protected Object determineCurrentLookupKey() {
    		return contextHolder.get();
    	}
    }
    

    5 线程池配置数据源  

    @Configuration
    public class DruidConfig {
    	private Logger logger = LoggerFactory.getLogger(DruidConfig.class);
    
    	@Value("${spring.datasource.master.url}")
    	private String masterUrl;
    
    	@Value("${spring.datasource.salve1.url}")
    	private String salve1Url;
    
    	@Value("${spring.datasource.salve2.url}")
    	private String salve2Url;
    
    	@Value("${spring.datasource.username}")
    	private String username;
    
    	@Value("${spring.datasource.password}")
    	private String password;
    
    	@Value("${spring.datasource.driver-class-name}")
    	private String driverClassName;
    
    	@Value("${spring.datasource.initialSize}")
    	private int initialSize;
    
    	@Value("${spring.datasource.minIdle}")
    	private int minIdle;
    
    	@Value("${spring.datasource.maxActive}")
    	private int maxActive;
    
    	@Value("${spring.datasource.maxWait}")
    	private int maxWait;
    
    	@Value("${spring.datasource.timeBetweenEvictionRunsMillis}")
    	private int timeBetweenEvictionRunsMillis;
    
    	@Value("${spring.datasource.minEvictableIdleTimeMillis}")
    	private int minEvictableIdleTimeMillis;
    
    	@Value("${spring.datasource.validationQuery}")
    	private String validationQuery;
    
    	@Value("${spring.datasource.testWhileIdle}")
    	private boolean testWhileIdle;
    
    	@Value("${spring.datasource.testOnBorrow}")
    	private boolean testOnBorrow;
    
    	@Value("${spring.datasource.testOnReturn}")
    	private boolean testOnReturn;
    
    	@Value("${spring.datasource.filters}")
    	private String filters;
    
    	@Value("${spring.datasource.logSlowSql}")
    	private String logSlowSql;
    
    	@Bean
    	public ServletRegistrationBean druidServlet() {
    
    		logger.info("init Druid Servlet Configuration ");
    		ServletRegistrationBean reg = new ServletRegistrationBean();
    		reg.setServlet(new StatViewServlet());
    		reg.addUrlMappings("/druid/*");
    		reg.addInitParameter("loginUsername", username);
    		reg.addInitParameter("loginPassword", password);
    		reg.addInitParameter("logSlowSql", logSlowSql);
    		return reg;
    	}
    
    	@Bean
    	public FilterRegistrationBean filterRegistrationBean() {
    		FilterRegistrationBean filterRegistrationBean = new FilterRegistrationBean();
    		filterRegistrationBean.setFilter(new WebStatFilter());
    		filterRegistrationBean.addUrlPatterns("/*");
    		filterRegistrationBean.addInitParameter("exclusions", "*.js,*.gif,*.jpg,*.png,*.css,*.ico,/druid/*");
    		filterRegistrationBean.addInitParameter("profileEnable", "true");
    		return filterRegistrationBean;
    	}
    
    	@Bean
    	public DataSource druidDataSource() {
    		DruidDataSource datasource = new DruidDataSource();
    		datasource.setUrl(masterUrl);
    		datasource.setUsername(username);
    		datasource.setPassword(password);
    		datasource.setDriverClassName(driverClassName);
    		datasource.setInitialSize(initialSize);
    		datasource.setMinIdle(minIdle);
    		datasource.setMaxActive(maxActive);
    		datasource.setMaxWait(maxWait);
    		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
    		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
    		datasource.setValidationQuery(validationQuery);
    		datasource.setTestWhileIdle(testWhileIdle);
    		datasource.setTestOnBorrow(testOnBorrow);
    		datasource.setTestOnReturn(testOnReturn);
    		try {
    			datasource.setFilters(filters);
    		} catch (SQLException e) {
    			logger.error("druid configuration initialization filter", e);
    		}
    
    		Map<Object, Object> dsMap = new HashMap();
    		dsMap.put("read_ds_1", druidDataSource_read1());
    		dsMap.put("read_ds_2", druidDataSource_read2());
    
    		dsMap.put("write_ds", datasource);
    
    		DynamicDataSource dynamicDataSource = new DynamicDataSource();
    		dynamicDataSource.setTargetDataSources(dsMap);
    		return dynamicDataSource;
    	}
    
    	public DataSource druidDataSource_read1() {
    		DruidDataSource datasource = new DruidDataSource();
    		datasource.setUrl(salve1Url);
    		datasource.setUsername(username);
    		datasource.setPassword(password);
    		datasource.setDriverClassName(driverClassName);
    		datasource.setInitialSize(initialSize);
    		datasource.setMinIdle(minIdle);
    		datasource.setMaxActive(maxActive);
    		datasource.setMaxWait(maxWait);
    		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
    		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
    		datasource.setValidationQuery(validationQuery);
    		datasource.setTestWhileIdle(testWhileIdle);
    		datasource.setTestOnBorrow(testOnBorrow);
    		datasource.setTestOnReturn(testOnReturn);
    		try {
    			datasource.setFilters(filters);
    		} catch (SQLException e) {
    			logger.error("druid configuration initialization filter", e);
    		}
    		return datasource;
    	}
    	public DataSource druidDataSource_read2() {
    		DruidDataSource datasource = new DruidDataSource();
    		datasource.setUrl(salve2Url);
    		datasource.setUsername(username);
    		datasource.setPassword(password);
    		datasource.setDriverClassName(driverClassName);
    		datasource.setInitialSize(initialSize);
    		datasource.setMinIdle(minIdle);
    		datasource.setMaxActive(maxActive);
    		datasource.setMaxWait(maxWait);
    		datasource.setTimeBetweenEvictionRunsMillis(timeBetweenEvictionRunsMillis);
    		datasource.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis);
    		datasource.setValidationQuery(validationQuery);
    		datasource.setTestWhileIdle(testWhileIdle);
    		datasource.setTestOnBorrow(testOnBorrow);
    		datasource.setTestOnReturn(testOnReturn);
    		try {
    			datasource.setFilters(filters);
    		} catch (SQLException e) {
    			logger.error("druid configuration initialization filter", e);
    		}
    		return datasource;
    	}
    
    }
    

    6 数据源注解:在service层通过数据源注解来指定数据源

       

    /**
     * @author lishun
     * @Description: 读数据源注解
     * @date 2017/8/9
     */
    @Target({ElementType.METHOD})
    @Retention(RetentionPolicy.RUNTIME)
    public @interface ReadDataSource {
    	String vlaue() default "read_ds";
    }
    
    /**
     * @author lishun
     * @Description: 写数据源注解
     * @date 2017/8/9
     */
    @Target({ElementType.METHOD})
    @Retention(RetentionPolicy.RUNTIME)
    public @interface WriteDataSource {
    	String value() default "write_ds";
    }
    

    7 service aop切面来切换数据源

      

    /**
     * @author lishun
     * @Description: TODO
     * @date 2017/8/9
     */
    @Component
    @Aspect
    public class ServiceAspect implements PriorityOrdered {
    	@Pointcut("execution(public * com.lishun.service.*.*(..))")
    	public void dataSource(){};
    
    	@Before("dataSource()")
    	public void before(JoinPoint joinPoint){
    		Class<?> className = joinPoint.getTarget().getClass();//获得当前访问的class
    		String methodName = joinPoint.getSignature().getName();//获得访问的方法名
    		Class[] argClass = ((MethodSignature)joinPoint.getSignature()).getParameterTypes();//得到方法的参数的类型
    		String dataSource = DynamicDataSource.DEFAULT_DS;
    		try {
    			Method method = className.getMethod(methodName, argClass);// 得到访问的方法对象
    			if (method.isAnnotationPresent(ReadDataSource.class)) {
    				ReadDataSource annotation = method.getAnnotation(ReadDataSource.class);
    				dataSource = annotation.vlaue();
    				int i = new Random().nextInt(2) + 1;    /* 简单的负载均衡 */
    
    				dataSource = dataSource + "_" + i;
    			}else if (method.isAnnotationPresent(WriteDataSource.class)){
    				WriteDataSource annotation = method.getAnnotation(WriteDataSource.class);
    				dataSource = annotation.value();
    			}
    		} catch (Exception e) {
    			e.printStackTrace();
    		}
    		DynamicDataSource.setDB(dataSource);// 切换数据源
    	}
    
    	/* 基于方法名
    	@Before("execution(public * com.lishun.service.*.find*(..)) || execution(public * com.lishun.service.*.query*(..))")
    	public void read(JoinPoint joinPoint){
    		DynamicDataSource.setDB("read_ds");// 切换数据源
    	}
    	@Before("execution(public * com.lishun.service.*.insert*(..)) || execution(public * com.lishun.service.*.add*(..))")
    	public void write(JoinPoint joinPoint){
    		DynamicDataSource.setDB("write_ds");// 切换数据源
    	}
    	*/
    
    	@After("dataSource()")
    	public void after(JoinPoint joinPoint){
    		DynamicDataSource.clearDB();// 切换数据源
    	}
    
    	@AfterThrowing("dataSource()")
    	public void AfterThrowing(){
    		System.out.println("AfterThrowing---------------" );
    	}
    
    	@Override
    	public int getOrder() {
    		return 1;//数值越小该切面先被执行,先选择数据源(防止事务aop使用数据源出现空异常)
    	}
    }
    

    8 测试 mapper的代码就不贴了,主要是service和controller

      service

    @Service
    @Transactional
    public class WmIpInfoServiceImpl implements WmIpInfoService {
    	@Autowired
    	public WmIpInfoMapper wmIpInfoMapper;
    
    	@Override
    	@ReadDataSource
    	public WmIpInfo findOneById(String id) {
    		//wmIpInfoMapper.selectByPrimaryKey(id);
    		return wmIpInfoMapper.selectByPrimaryKey(id);
    	}
    
    	@Override
    	@WriteDataSource
    	public int insert(WmIpInfo wmIpInfo) {
    		int result = wmIpInfoMapper.insert(wmIpInfo);
    		return result;
    	}
    }
    

      contrlloer

    @RestController
    public class IndexController {
    	@Autowired
    	public WmIpInfoService wmIpInfoService;
    	@GetMapping("/index/{id}")
    	public WmIpInfo index(@PathVariable(value = "id") String id){
    		WmIpInfo wmIpInfo = new WmIpInfo();
    		wmIpInfo.setId(UUID.randomUUID().toString());
    		wmIpInfoService.insert(wmIpInfo);
    		wmIpInfoService.findOneById(id);
    		return null;
    	}
    }
    

      运行spring boot 在浏览器输入http://localhost:9022/index/123456

      查看日志

      

     

     基于中间件方式实现读写分离(mycat:主要是mycat安装使用及其注意事项)

    3-1 下载 http://dl.mycat.io/
    3-2 解压,配置MYCAT_HOME;
    3-3 修改文件 vim conf/schema.xml

    <?xml version="1.0"?>
    <!DOCTYPE mycat:schema SYSTEM "schema.dtd">
    
    <mycat:schema xmlns:mycat="http://io.mycat/">
      <schema name="worldmap" checkSQLschema="false" sqlMaxLimit="100" dataNode="worldmap_node"></schema>
      <dataNode name="worldmap_node" dataHost="worldmap_host" database="worldmap" /> <!-- database:数据库名称 -->
      <dataHost name="worldmap_host" maxCon="1000" minCon="10" balance="1" writeType="0" dbType="mysql" dbDriver="native" switchType="2" slaveThreshold="100">
        <heartbeat>select user()</heartbeat>
        <writeHost host="hostM1" url="192.168.203.135:3306" user="root" password="123456"><!--读写分离模式,写库:192.168.203.135,读库192.168.203.139-->
          <readHost host="hostR1" url="192.168.203.139:3306" user="root" password="123456" />
        </writeHost>
        <writeHost host="hostM2" url="192.168.203.135:3306" user="root" password="123456"> <!--主从切换模式,当hostM1宕机,读写操作在hostM2服务器数据库执行-->
      </dataHost>
    </mycat:schema>

      配置说明:
      name:属性唯一标识dataHost标签,供上层的标签使用。
      maxCon:最大连接数
      minCon:最先连接数
      balance
        1、balance=0 不开启读写分离机制,所有读操作都发送到当前可用的writehost了 .
        2、balance=1 全部的readhost与stand by writeHost 参与select语句的负载均衡。简单的说,双主双从模式(M1àS1,M2àS2,并且M1和M2互为主备),正常情况下,M1,S1,S2都参与select语句的复杂均衡。
        3、balance=2 所有读操作都随机的在readhost和writehost上分发

      writeType 负载均衡类型,目前的取值有3种:
        1、writeType="0″, 所有写操作发送到配置的第一个writeHost。
        2、writeType="1″,所有写操作都随机的发送到配置的writeHost。
        3、writeType="2″,不执行写操作。

      switchType
        1、switchType=-1 表示不自动切换
        2、switchType=1 默认值,自动切换
        3、switchType=2 基于MySQL 主从同步的状态决定是否切换

      dbType:数据库类型 mysql,postgresql,mongodb、oracle、spark等。

      heartbeat:用于和后端数据库进行心跳检查的语句。例如,MYSQL可以使用select user(),Oracle可以使用select 1 from dual等。
          这个标签还有一个connectionInitSql属性,主要是当使用Oracla数据库时,需要执行的初始化SQL语句就这个放到这里面来。例如:altersession set nls_date_format='yyyy-mm-dd hh24:mi:ss'
          当switchType=2 主从切换的语句必须是:show slave status

      writeHost、readHost:这两个标签都指定后端数据库的相关配置给mycat,用于实例化后端连接池。唯一不同的是,writeHost指定写实例、readHost指定读实例,
                在一个dataHost内可以定义多个writeHost和readHost。但是,如果writeHost指定的后端数据库宕机,那么这个writeHost绑定的所有readHost都将不可用。
                另一方面,由于这个writeHost宕机系统会自动的检测到,并切换到备用的writeHost上去。

    3-4 修改文件 vim conf/server.xml

      

    <!DOCTYPE mycat:server SYSTEM "server.dtd">
    <mycat:server xmlns:mycat="http://io.mycat/">
    <system>
    
    </system>
    
    <user name="root">
      <property name="password">123456</property>
      <property name="schemas">worldmap</property><!--与schema.xml相对应-->
      <property name="readOnly">false</property> <!--readOnly是应用连接中间件逻辑库所具有的权限。true为只读,false为读写都有,默认为false。-->
    </user>
    
    </mycat:server>

    3-5 启动 mycat start
    查看启动日志:logs/wrapper.log;,正常启动成功后会有mycat.log日志,如果服务未启动成功不会有对应日志

    3-6:对于开发人员mycat相当于一个新的数据库服务端(默认端口8066),开发人员增删改查不再是直接连接数据库,而是连接数据库中间件,中间件通过其自带的lua脚本进行sql判断,来路由到指定数据库(实质根据selet,insert,update,delete关键字)

    3-7:测试读写分离

      读数据路由到 192.168.203.139

      写数据路由到192.168.203.135 

     

      当主库宕机,读写操作都在192.168.203.139

      

      

    3-8:注意事项
    一般使用框架都会用到事务,如果都要到事务那么就都会访问主服务器,达不到分离的效果,因此配置事务的时候要注意区分,比如只对包含增删改的进行事务配置

  • 相关阅读:
    2020面试有感(1)
    多线程与异步
    GP-荧光免疫分析仪SDK 协议
    FastReport模板设计和调用
    EF的多线程与分库架构设计实现(2)
    HTML页面转化为带有水印的PDF文件
    利用 html2canvas+jsPDF 把 HTML元素 转化为PDF文件,以及遇到的坑
    前端json数据格式化显示
    单元测试——引入Vuex
    单元测试——引入vue-router和APP.vue文件
  • 原文地址:https://www.cnblogs.com/lishun1005/p/8472358.html
Copyright © 2020-2023  润新知