• BZOJ 2337 XOR和路径(概率DP)


    求点1到点n经过的路径权值异或和的期望。

    考虑按位计算,对于每一位来说,令dp[i]表示从i到n的异或和期望值。

    那么dp[i]=sum(dp[j]+1-dp[k]).如果w(i,j)这一位为0,如果w(i,k)这一位为1.边界为dp[n][n]=0.

    那么求解每个方程组就得到了每一位的贡献。另外注意自环的出理就ok了。

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi acos(-1.0)
    # define eps 1e-9
    # define MOD 1000000000
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    int Scan() {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    void Out(int a) {
        if(a<0) {putchar('-'); a=-a;}
        if(a>=10) Out(a/10);
        putchar(a%10+'0');
    }
    const int N=105;
    //Code begin...
    
    struct Edge{int p, next, w;}edge[20005];
    int head[N], cnt=1, dee[N];
    double a[N][N], x[N];
    int equ, var;
    
    void add_edge(int u, int v, int w){
        edge[cnt].p=v; edge[cnt].next=head[u]; edge[cnt].w=w; head[u]=cnt++;
    }
    int Guass(){
        int i, j, k, col, max_r;
        for (k=0, col=0; k<equ&&col<var; ++k, ++col){
            max_r=k;
            FO(i,k+1,equ) if (fabs(a[i][col])>fabs(a[max_r][col])) max_r=i;
            if (fabs(a[max_r][col])<eps) return 0;
            if (k!=max_r) {FO(j,col,var) swap(a[k][j],a[max_r][j]); swap(x[k],x[max_r]);}
            x[k]/=a[k][col];
            FO(j,col+1,var) a[k][j]/=a[k][col];
            a[k][col]=1;
            FO(i,0,equ) if (i!=k) {
                x[i]-=x[k]*a[i][col];
                FO(j,col+1,var) a[i][j]-=a[k][j]*a[i][col];
                a[i][col]=0;
            }
        }
        return 1;
    }
    int main ()
    {
        int n, m, u, v, w;
        double ans=0;
        scanf("%d%d",&n,&m);
        equ=var=n;
        while (m--) {
            scanf("%d%d%d",&u,&v,&w);
            --u; --v;
            if (u!=v) add_edge(u,v,w), add_edge(v,u,w), ++dee[v];
            else add_edge(u,v,w);
            ++dee[u];
        }
        FO(i,0,32) {
            mem(a,0); mem(x,0);
            FO(j,0,n-1) {
                a[j][j]=dee[j];
                for (int k=head[j]; k; k=edge[k].next) {
                    v=edge[k].p; w=edge[k].w;
                    if (w&(1<<i)) {a[j][v]+=1; x[j]+=1;}
                    else a[j][v]-=1;
                }
            }
            a[n-1][n-1]=1;
            Guass();
            ans+=(x[0]*(1<<i));
        }
        printf("%.3f
    ",ans);
        return 0;
    }
    View Code
  • 相关阅读:

    windows+php+redis的安装
    redis配置
    vim常用快捷键
    php数组的操作技巧
    python3与mysql数据库连接方式
    linux下删除文件夹,修改文件夹下所有文件的权限命令
    Linux下 “.tar.gz”格式的解压与压缩
    Linux解压tar.gz文件时提示gzip:stdin:not in gzip format 错误
    Ubuntu 18.04中安装docker,再在docker中安装mysql,及遇见问题
  • 原文地址:https://www.cnblogs.com/lishiyao/p/6744388.html
Copyright © 2020-2023  润新知