• BZOJ 2306 幸福路径(DP)


    题解来源:http://www.cnblogs.com/jianglangcaijin/p/3799494.html

    最后必然是走了一条链,或者是一个环(一直绕),或者是一条链加一个环。设f[i][j][k]表示从点j走了i步到达节点k的最大幸福度。那么f[i][j][j]就表示在绕环。那么在这个环上一直绕下去的期望为:

    那么从S走i步到j再在j开始的环上绕圈的期望为:

    # include <cstdio>
    # include <cstring>
    # include <cstdlib>
    # include <iostream>
    # include <vector>
    # include <queue>
    # include <stack>
    # include <map>
    # include <set>
    # include <cmath>
    # include <algorithm>
    using namespace std;
    # define lowbit(x) ((x)&(-x))
    # define pi acos(-1.0)
    # define eps 1e-3
    # define MOD 1000000000
    # define INF 1000000000
    # define mem(a,b) memset(a,b,sizeof(a))
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    # define FO(i,a,n) for(int i=a; i<n; ++i)
    # define bug puts("H");
    # define lch p<<1,l,mid
    # define rch p<<1|1,mid+1,r
    # define mp make_pair
    # define pb push_back
    typedef pair<int,int> PII;
    typedef vector<int> VI;
    # pragma comment(linker, "/STACK:1024000000,1024000000")
    typedef long long LL;
    int Scan() {
        int x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    void Out(int a) {
        if(a<0) {putchar('-'); a=-a;}
        if(a>=10) Out(a/10);
        putchar(a%10+'0');
    }
    const int N=105;
    //Code begin...
    
    double dp[N][N][N], val[N], Pow[N], sum[N];
    int E[N*10][2];
    
    int main ()
    {
        int n, m, s, u, v;
        double p, ans=0;
        scanf("%d%d",&n,&m);
        FOR(i,1,n) scanf("%lf",val+i);
        scanf("%d%lf",&s,&p);
        FOR(i,1,m) scanf("%d%d",&E[i][0],&E[i][1]);
        FOR(i,0,n) FOR(j,1,n) FOR(k,1,n) dp[i][j][k]=-1e18;
        Pow[0]=1; FOR(i,1,n+1) Pow[i]=Pow[i-1]*p;
        FOR(i,1,n) sum[i]=dp[0][i][i]=val[i];
        FOR(i,1,n) FOR(j,1,n) FOR(k,1,m) dp[i][j][E[k][1]]=max(dp[i][j][E[k][1]],dp[i-1][j][E[k][0]]+val[E[k][1]]*Pow[i]);
        FOR(j,1,n) FOR(i,1,n) sum[j]=max(sum[j],(dp[i][j][j]-val[j]*Pow[i])/(1-Pow[i]));
        FOR(i,1,n) FOR(j,1,n) if (dp[i][s][j]>=0) ans=max(ans,max(dp[i][s][j],dp[i][s][j]+sum[j]*Pow[i]-val[j]*Pow[i]));
        printf("%.1f
    ",ans);
        return 0;
    }
    View Code
  • 相关阅读:
    11.1作业
    10.25作业
    10.18作业
    zancun
    10.11作业
    SQL日期格式,转自will哥
    转自pnljs 委托(Func<int,bool>)
    ORM即 对象-关系映射(转自:微冷的雨)
    跨域上传文件(还是没有明白)
    webSocket详解
  • 原文地址:https://www.cnblogs.com/lishiyao/p/6735218.html
Copyright © 2020-2023  润新知