• zancun


    import numpy as np
    import matplotlib.pyplot as plt
    
    mu = 1  #期望为1
    sigma = 3  #标准差为3
    num = 10000  #个数为10000
    
    rand_data = np.random.normal(mu, sigma, num)
    print(rand_data.shape,type(rand_data))
    
    count, bins, ignored = plt.hist(rand_data, 30, normed=True)
    plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2)), linewidth=2, color='r')
    plt.show()
    
    np.arange(5)  list(range(5))
    np.array([a,b])
    np.arange(0,60,5) .reshape(3,4) 
    np.linspace(0,20) #在指定的间隔内返回均匀间隔的数字。
    
    np.random.random(10) #(0,1)以内10个随机浮点数
    np.random.randint(1,100,[5,5]) #(1,100)以内的5行5列随机整数
    np.random.rand(2,3) #产生2行3列均匀分布随机数组
    np.random.randn(3,3) #3行3列正态分布随机数据
    import numpy
    
    from sklearn.datasets import load_iris    
    data = load_iris()
    print(data)
    petal_length = data['data'][,3]
    data1 = np.max(petal_length)
    data2 = np.min(petal_length)
    data3 = np.meanpetal_length)
    data4 = np.std(petal_length)
    data5 = np.median(petal_length
  • 相关阅读:
    C语言I博客作业09
    C语言I博客作业08
    14
    13
    12
    11
    10
    9
    8
    7
  • 原文地址:https://www.cnblogs.com/Tlzlykc/p/9808638.html
Copyright © 2020-2023  润新知