因为有着色数的限制,故使用Burnside引理。
添加一个元置换(1,2,,,n)形成m+1种置换,对于每个置换求出循环节的个数,
每个循环节的长度。
则ans=sigma(f(i))/(m+1) %p (1<=i<=m+1).
其中f(i)是第i种置换下的不动点个数。
可以用dp来求出f(i), 设第i个置换的循环节个数为T, 令dp[i][j][k]表示前i个循环节中使用了j个红色,k个蓝色的不动点个数。进行一次n^3的DP即可。
最后m+1模p意义下的逆元不再叙述。
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e-3 # define MOD 1000000007 # define INF (LL)1<<60 # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<1,l,mid # define rch p<<1|1,mid+1,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { int res=0, flag=0; char ch; if((ch=getchar())=='-') flag=1; else if(ch>='0'&&ch<='9') res=ch-'0'; while((ch=getchar())>='0'&&ch<='9') res=res*10+(ch-'0'); return flag?-res:res; } void Out(int a) { if(a<0) {putchar('-'); a=-a;} if(a>=10) Out(a/10); putchar(a%10+'0'); } const int N=100005; //Code begin... struct Per{int a[65];}per[65]; int dp[65][65][65], n, vis[65], num[65]; int get_loop(int x) { int cnt=0; mem(vis,0); mem(num,0); FOR(i,1,n) { if (vis[i]) continue; ++cnt; int now=i; while (vis[now]==0) vis[now]=1, now=per[x].a[now], ++num[cnt]; } return cnt; } int extend_gcd(int a, int b, int &x, int &y) { if (a==0&&b==0) return -1; if (b==0){x=1; y=0; return a;} int d=extend_gcd(b,a%b,y,x); y-=a/b*x; return d; } int mod_reverse(int a, int n) { int x, y, d=extend_gcd(a,n,x,y); if (d==1) return (x%n+n)%n; else return -1; } int main () { int sr, sb, sg, m, p; LL ans=0; scanf("%d%d%d%d%d",&sr,&sb,&sg,&m,&p); n=sr+sb+sg; FOR(i,1,m) FOR(j,1,n) scanf("%d",&per[i].a[j]); FOR(j,1,n) per[m+1].a[j]=j; FOR(i,1,m+1) { int t=get_loop(i); mem(dp,0); dp[0][0][0]=1; int sum=0; for (int j=1; j<=t; ++j) FOR(k,0,sr) FOR(l,0,sb) { sum+=num[j]; if (k+l>sum) continue; if (sum-k-l>=num[j]) dp[j][k][l]=dp[j-1][k][l]; if (k>=num[j]) dp[j][k][l]=(dp[j][k][l]+dp[j-1][k-num[j]][l])%p; if (l>=num[j]) dp[j][k][l]=(dp[j][k][l]+dp[j-1][k][l-num[j]])%p; } ans=(ans+dp[t][sr][sb])%p; } ans=ans*mod_reverse(m+1,p)%p; printf("%lld ",ans); return 0; }