• 算法之狄克斯特拉算法 --《图解算法》


    2019你好!好好生活,好好工作!

    狄克斯特拉算法

    狄克斯特拉算法(Dijkstra )用于计算出不存在非负权重的情况下,起点到各个节点的最短距离

    可用于解决2类问题:

    从A出发是否存在到达B的路径;
    从A出发到达B的最短路径(时间最少、或者路径最少等),事实上最后计算完成后,已经得到了A到各个节点的最短路径了;
    其思路为:

    (1) 找出“最便宜”的节点,即可在最短时间内到达的节点。

    (2) 更新该节点对应的邻居节点的开销,其含义将稍后介绍。

    (3) 重复这个过程,直到对图中的每个节点都这样做了。

    (4) 计算最终路径。

    我们根据书中的例子给出相关的具体实现

    因为个人最经常使用的是OC语言,所以先用OC简单实现了一下,有不对之处还请告知,谢谢!

    - (void)installDijkstra
    {
        //用来记录已经被便利过该节点所有邻居的节点
        NSMutableArray *processed= [NSMutableArray array];
       //描述图的
        NSMutableDictionary *origianldic = [NSMutableDictionary dictionary];
        [origianldic setObject:@{@"a":@6,@"b":@2} forKey:@"start"];
        [origianldic setObject:@{@"fin":@1} forKey:@"a"];
        [origianldic setObject:@{@"a":@3,@"fin":@5} forKey:@"b"];
        //创建开销
        NSMutableDictionary *costDic = [NSMutableDictionary dictionary];
        costDic[@"a"] = @6;
        costDic[@"b"] = @2;
        costDic[@"fin"] = @(NSIntegerMax);
        //记录该节点的父节点的
        NSMutableDictionary *parentDic = [NSMutableDictionary dictionary];
        parentDic[@"a"] = @"start";
        parentDic[@"b"] = @"start";
        parentDic[@"fin"] = @"";
        
        NSString *node = [self findLowerCostNode:costDic array:processed];
        while (![node isEqualToString:@""]) {
            NSDictionary *tempDic = origianldic[node];
            for (NSString *key in tempDic.allKeys) {
                NSInteger newCount = [costDic[node]integerValue] + [tempDic[key]integerValue];
                if ([costDic[key] integerValue] > newCount) {
                    costDic[key] = @(newCount);
                    parentDic[key] = node;
                }
            }
            [processed addObject:node];
            node = [self findLowerCostNode:costDic array:processed];
        }
        NSLog(@"origianldic = %@,
    costDic = %@,
    parentDic = %@,
     processed = %@,
     NSIntegerMax = %ld",origianldic,costDic,parentDic,processed,NSIntegerMax);
        NSLog(@"--end --costDic = %@",costDic);
        NSLog(@"--end --parentDic = %@",parentDic);
    }
    
    /**
     找到开销最小的节点
    
     @param dic dic
     @param processArray 记录节点
     @return 为空说明已经查找完毕
     */
    - (NSString *)findLowerCostNode:(NSDictionary *)dic array:(NSMutableArray *)processArray
    {
        NSInteger lowerCost = [dic[@"fin"]integerValue];
        NSString *lowedNode = @"";
        for (NSString *key in dic.allKeys) {
            NSInteger costNum = [dic[key]integerValue];
            if (costNum < lowerCost && (![processArray containsObject:key]) ) {
                lowerCost = costNum;
                lowedNode = key;
    
            }
            
        }
        return lowedNode;
    }
    OC语言简单实现
    2019-01-13 21:24:14.382432+0800 HaiFeiTestProject[29763:1130947] --end --costDic = {
        a = 5;
        b = 2;
        fin = 6;
    }

    python实现

    infinity = float('inf')
    graph = {'start': {'a': 6, 'b': 2}, 'a': {'fin': 1}, 'b': {'a': 3, 'fin': 5}, 'fin': {}}
    costs = {'a': 6, 'b': 2, 'fin': infinity}
    parents = {'a': 'start', 'b': 'start', 'fin': None}
    processed = []
    
    def main(graph, costs, parents, processed, infinity):
        node = find_lowest_cost_node(costs, processed)
        while node is not None:
            for n in graph[node].keys():
                new_cost = costs[node] + graph[node][n]
                if costs[n] > new_cost:
                    costs[n] = new_cost
                    parents[n] = node
            processed.append(node)
            node = find_lowest_cost_node(costs, processed)
    
    
    def find_lowest_cost_node(costs, processed):
        lowest_cost = float('inf')
        lowest_cost_node = None
        for node in costs:
            if lowest_cost > costs[node] and node not in processed:
                lowest_cost = costs[node]
                lowest_cost_node = node
        return lowest_cost_node
    
    
    main(graph, costs, parents, processed, infinity)
    print(costs)
    print(parents)
    Python实现

    运行结果

    算法图解之狄克斯特拉算法 和书中描述基本一致,可参考!

  • 相关阅读:
    eclipse不能反编译 eclipse中Source not found解决方法
    3. copy 使用及示例
    pgbench 使用介绍及示例
    1. 将 TDSQL 接入已经在使用的 HDFS
    1.PGbadger 慢日志分析工具
    1. pg_dump 使用及示例
    5.6.10 HDFS DN 节点扩容
    关于 PG CVE202221724 漏洞处理
    2.pg_dumpall 使用及示例
    4.pg_bulkload 数据加载使用及示例
  • 原文地址:https://www.cnblogs.com/lisaloveyou1900/p/10264170.html
Copyright © 2020-2023  润新知