In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
分块:
#include<iostream> #include<algorithm> #include<cmath> using namespace std; const double p=0.577215664; const int maxn=1e8+100; /* 1/i求和为ln(n)+p */ //数论分块 double a[maxn/100+1]; void inint(){ a[0]=0; a[1]=1.0; double t=1.0; for(int i=2;i<=maxn;i++){ t=t+1.0/i; if(i%100==0){ a[i/100]=t; } } } int main(){ inint(); int t; cin>>t; int n; int kase=0; while(t--){ cin>>n; int t=n/100; double ans=a[t]; for(int i=t*100+1;i<=n;i++){ ans+=1.0/i; } printf("Case %d: %.10lf ",++kase,ans); } return 0; }