• 2021“MINIEYE杯”中国大学生算法设计超级联赛(1)1005. Minimum spanning tree(min25筛)


    Problem Description

    Given n-1 points, numbered from 2 to n, the edge weight between the two points a and b is lcm(a, b). Please find the minimum spanning tree formed by them.

    A minimum spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. That is, it is a spanning tree whose sum of edge weights is as small as possible.

    lcm(a, b) is the smallest positive integer that is divisible by both a and b.

    Input

    The first line contains a single integer t (t<=100) representing the number of test cases in the input. Then t test cases follow.

    The only line of each test case contains one integers n (2<=n<=10000000) as mentioned above.

    Output

    For each test case, print one integer in one line, which is the minimum spanning tree edge weight sum.

    Sample Input

    2
    2
    6
    

    Sample Output

    0
    26
    

    手玩样例很容易就能发现所有合数一定和质因子相连,所以边权为本身,质数一定和2相连,因此边权是这个质数 * 2。所以总的答案就是2到n求和再加上n以内的质数和再减去2 * 2。n以内的质数和可以用min25筛求。

    #include <bits/stdc++.h>
    #define int long long
    using namespace std;
    typedef long long ll;
    const int N = 1000010;
    struct Min25 {
    
        ll prime[N], id1[N], id2[N], flag[N], ncnt, m;
    
        ll g[N], sum[N], a[N], T, n;
    
        inline int ID(ll x) {
            return x <= T ? id1[x] : id2[n / x];
        }
    
        inline ll calc(ll x) {
            return x * (x + 1) / 2 - 1;
        }
    
        inline ll f(ll x) {
            return x;
        }
        inline void Init() {
            memset(prime, 0, sizeof(prime));
            memset(id1, 0, sizeof(id1));
            memset(id2, 0, sizeof(id2));
            memset(flag, 0, sizeof(flag));
            memset(g, 0, sizeof(g));
            memset(sum, 0, sizeof(sum));
            memset(a, 0, sizeof(a));
            ncnt = m = T = n = 0;
        }
        inline void init() {
            T = sqrt(n + 0.5);
            for (int i = 2; i <= T; i++) {
                if (!flag[i]) prime[++ncnt] = i, sum[ncnt] = sum[ncnt - 1] + i;
                for (int j = 1; j <= ncnt && i * prime[j] <= T; j++) {
                    flag[i * prime[j]] = 1;
                    if (i % prime[j] == 0) break;
                }
            }
            for (ll l = 1; l <= n; l = n / (n / l) + 1) {
                a[++m] = n / l;
                if (a[m] <= T) id1[a[m]] = m; else id2[n / a[m]] = m;
                g[m] = calc(a[m]);
            }
            for (int i = 1; i <= ncnt; i++)
                for (int j = 1; j <= m && (ll)prime[i] * prime[i] <= a[j]; j++)
                    g[j] = g[j] - (ll)prime[i] * (g[ID(a[j] / prime[i])] - sum[i - 1]);
        }
    
        inline ll solve(ll x) {
            if (x <= 1) return x;
            return n = x, init(), g[ID(n)];
        }
    
    }a;
    signed main() {
    	int t;
    	cin >> t;
    	while(t--) {
    		long long n;
    		cin >> n;
    		a.Init();
    		printf("%lld
    ", (2 + n) * (n - 1) / 2 +a.solve(n) - 4);
    	}
    }
    
  • 相关阅读:
    解决远程桌面复制文件大于3G出错问题
    c++builder Form重载WindowProc、WndProc 截获消息
    FireDAC指定mssql驱动
    C++Builder 增加IPEdit控件
    MySQL 字符串按数值进行排序
    Java POI导出Word表格并使用输出流下载文件弹出打开保存框
    Java POI导出Excel并使用输出流下载文件弹出打开保存框
    MySQL 查询除某些字段以外的值
    MySQL 一个字段多个值查询
    Java Calendar 计算两个时间相隔天数
  • 原文地址:https://www.cnblogs.com/lipoicyclic/p/15036405.html
Copyright © 2020-2023  润新知