• GIS理论(墨卡托投影、地理坐标系、地面分辨率、地图比例尺、Bing Maps Tile System)


    墨卡托投影(Mercator Projection),又名“等角正轴圆柱投影”,荷兰地图学家墨卡托(Mercator)在1569年拟定,假设地球被围在一个中空的圆柱里,其赤道与圆柱相接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅标准纬线为零度(即赤道)的“墨卡托投影”绘制出的世界地图。

    一、墨卡托投影坐标系(Mercator Projection)
    墨卡托投影以整个世界范围,赤道作为标准纬线,本初子午线作为中央经线,两者交点为坐标原点,向东向北为正,向西向南为负。南北极在地图的正下、上方,而东西方向处于地图的正右、左。
    由于Mercator Projection在两极附近是趋于无限值得,因此它并没完整展现了整个世界,地图上最高纬度是85.05度。为了简化计算,我们采用球形映射,而不是椭球体形状。虽然采用Mercator Projection只是为了方便展示地图,需要知道的是,这种映射会给Y轴方向带来0.33%的误差。
    由于赤道半径为6378137米,则赤道周长为2*PI*r = 20037508.3427892,因此X轴的取值范围:[-20037508.3427892,20037508.3427892]。当纬度φ接近两极,即90°时,Y值趋向于无穷。因此通常把Y轴的取值范围也限定在[-20037508.3427892,20037508.3427892]之间。因此在墨卡托投影坐标系(米)下的坐标范围是:最小为(-20037508.3427892, -20037508.3427892 )到最大坐标为(20037508.3427892, 20037508.3427892)。

    二、地理坐标系(Geographical coordinates)
    地理经度的取值范围是[-180,180],纬度不可能到达90°,通过纬度取值范围为 [20037508.3427892,20037508.3427892]反计算可得到纬度值为85.05112877980659。因此纬度取值范围是 [-85.05112877980659,85.05112877980659]。因此,地理坐标系(经纬度)对应的范围是:最小地理坐标 (-180,-85.05112877980659),最大地理坐标(180, 85.05112877980659)。

    三、地面分辨率(Ground Resolution)
      地面分辨率是以一个像素(pixel)代表的地面尺寸(米)。以微软Bing Maps为例,当Level为1时,图片大小为512*512(4个Tile),那么赤道空间分辨率为:赤道周长/512。其他纬度的空间分辨率则为纬度圈长度/512,极端的北极则为0。Level为2时,赤道的空间分辨率为 赤道周长/1024,其他纬度为纬度圈长度1024。很明显,Ground Resolution取决于两个参数,缩放级别Level和纬度latitude ,Level决定像素的多少,latitude决定地面距离的长短。
    地面分辨率的公式为,单位:米/像素:
    ground resolution = (cos(latitude * pi/180) * 2 * pi * 6378137 meters) / (256 * 2level pixels)  

    最低地图放大级别(1级),地图是512 x 512像素。每下一个放大级别,地图的高度和宽度分别乘于2:2级是1024 x 1024像素,3级是2048 x 2048像素,4级是4096 x 4096像素,等等。通常而言,地图的宽度和高度可以由以下式子计算得到:map width = map height = 256 * 2^level pixels

    四、地图比例尺(Map Scale)
    地图比例尺是指测量相同目标时,地图上距离与实际距离的比例。通过地图分辨率在计算可知由Level可得到图片的像素大小,那么需要把其转换为以米为单位的距离,涉及到DPI(dot per inch),暂时可理解为类似的PPI(pixelper inch),即每英寸代表多少个像素。256 * 2level / DPI 即得到相应的英寸inch,再把英寸inch除以0.0254转换为米。实地距离仍旧是:cos(latitude * pi/180) * 2 * pi * 6378137 meters; 因此比例尺的公式为:
    map scale = 256 * 2level / screen dpi / 0.0254 / (cos(latitude * pi/180) * 2 * pi * 6378137)
    比例尺= 1 : (cos(latitude * pi/180) * 2 * pi * 6378137 * screen dpi) / (256 * 2level * 0.0254)

    地面分辨率和地图比例尺之间的关系:
    map scale = 1 : ground resolution * screen dpi / 0.0254 meters/inch

    缩放级别
    地图宽度、高度(像素)
    地面分辨率(米/像素)
    地图比例尺(以96dpi为例)
    1
    512
    78,271.5170
    1 : 295,829,355.45
    2
    1,024
    39,135.7585
    1 : 147,914,677.73
    3
    2,048
    19,567.8792
    1 : 73,957,338.86
    4
    4,096
    9,783.9396
    1 : 36,978,669.43
    5
    8,192
    4,891.9698
    1 : 18,489,334.72
    6
    16,384
    2,445.9849
    1 : 9,244,667.36
    7
    32,768
    1,222.9925
    1 : 4,622,333.68
    8
    65,536
    611.4962
    1 : 2,311,166.84
    9
    131,072
    305.7481
    1 : 1,155,583.42
    10
    262,144
    152.8741
    1 : 577,791.71
    11
    524,288
    76.4370
    1 : 288,895.85
    12
    1,048,576
    38.2185
    1 : 144,447.93
    13
    2,097,152
    19.1093
    1 : 72,223.96
    14
    4,194,304
    9.5546
    1 : 36,111.98
    15
    8,388,608
    4.7773
    1 : 18,055.99
    16
    16,777,216
    2.3887
    1 : 9,028.00
    17
    33,554,432
    1.1943
    1 : 4,514.00
    18
    67,108,864
    0.5972
    1 : 2,257.00
    19
    134,217,728
    0.2986
    1 : 1,128.50
    20
    268,435,456
    0.1493
    1 : 564.25
    21
    536,870,912
    0.0746
    1 : 282.12
    22
    1,073,741,824
    0.0373
    1 : 141.06
    23
    2,147,483,648
    0.0187
    1 : 70.53



    五、Bing Maps像素坐标系和地图图片编码
    为了优化地图系统性能,提高地图下载和显示速度,所有地图都被分割成256 x 256像素大小的正方形小块。由于在每个放大级别下的像素数量都不一样,因此地图图片(Tile)的数量也不一样。每个tile都有一个XY坐标值,从左上角的(0, 0)至右下角的(2^level–1, 2^level–1)。例如在3级放大级别下,所有tile的坐标值范围为(0, 0)至(7, 7),如下图:

    已知一个像素的XY坐标值时,我们很容易得到这个像素所在的Tile的XY坐标值:
        tileX = floor(pixelX / 256)  tileY = floor(pixelY / 256)

    为了简化索引和存储地图图片,每个tile的二维XY值被转换成一维字串,即四叉树键值(quardtree key,简称quadkey)。每个quadkey独立对应某个放大级别下的一个tile,并且它可以被用作数据库中B-tree索引值。为了将坐标值转换成 quadkey,需要将Y和X坐标二进制值交错组合,并转换成4进制值及对应的字符串。例如,假设在放大级别为3时,tile的XY坐标值为(3,5),quadkey计算如下:
      tileX = 3 = 011(二进制)
      tileY = 5 = 101(二进制)
      quadkey = 100111(二进制) = 213(四进制) = “213”
    Quadkey还有其他一些有意思的特性。第一,quadkey的长度等于该tile所对应的放大级别;第二,每个tile的quadkey的前几位和其父tile(上一放大级别所对应的tile)的quadkey相同,下图中,tile 2是tile 20至23的父tile,tile 13是tile 130至133的父级:

    最后,quadkey提供的一维索引值通常显示了两个tile在XY坐标系中的相似性。换句话说,两个相邻的tile对应的quadkey非常接近。这对于优化数据库的性能非常重要,因为相邻的tile通常被同时请求显示,因此可以将这些tile存放在相同的磁盘区域中,以减少磁盘的读取次数。

    下面是微软Bing Maps的TileSystem相关算法:

    1 using System;
    2  using System.Text;
    3
    4 namespace Microsoft.MapPoint
    5 {
    6 static class TileSystem
    7 {
    8 private const double EarthRadius = 6378137;
    9 private const double MinLatitude = -85.05112878;
    10 private const double MaxLatitude = 85.05112878;
    11 private const double MinLongitude = -180;
    12 private const double MaxLongitude = 180;
    13
    14
    15 /// <summary>
    16 /// Clips a number to the specified minimum and maximum values.
    17 /// </summary>
    18 /// <param name="n">The number to clip.</param>
    19 /// <param name="minValue">Minimum allowable value.</param>
    20 /// <param name="maxValue">Maximum allowable value.</param>
    21 /// <returns>The clipped value.</returns>
    22 private static double Clip(double n, double minValue, double maxValue)
    23 {
    24 return Math.Min(Math.Max(n, minValue), maxValue);
    25 }
    26
    27
    28
    29 /// <summary>
    30 /// Determines the map width and height (in pixels) at a specified level
    31 /// of detail.
    32 /// </summary>
    33 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    34 /// to 23 (highest detail).</param>
    35 /// <returns>The map width and height in pixels.</returns>
    36 public static uint MapSize(int levelOfDetail)
    37 {
    38 return (uint) 256 << levelOfDetail;
    39 }
    40
    41
    42
    43 /// <summary>
    44 /// Determines the ground resolution (in meters per pixel) at a specified
    45 /// latitude and level of detail.
    46 /// </summary>
    47 /// <param name="latitude">Latitude (in degrees) at which to measure the
    48 /// ground resolution.</param>
    49 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    50 /// to 23 (highest detail).</param>
    51 /// <returns>The ground resolution, in meters per pixel.</returns>
    52 public static double GroundResolution(double latitude, int levelOfDetail)
    53 {
    54 latitude = Clip(latitude, MinLatitude, MaxLatitude);
    55 return Math.Cos(latitude * Math.PI / 180) * 2 * Math.PI * EarthRadius / MapSize(levelOfDetail);
    56 }
    57
    58
    59
    60 /// <summary>
    61 /// Determines the map scale at a specified latitude, level of detail,
    62 /// and screen resolution.
    63 /// </summary>
    64 /// <param name="latitude">Latitude (in degrees) at which to measure the
    65 /// map scale.</param>
    66 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    67 /// to 23 (highest detail).</param>
    68 /// <param name="screenDpi">Resolution of the screen, in dots per inch.</param>
    69 /// <returns>The map scale, expressed as the denominator N of the ratio 1 : N.</returns>
    70 public static double MapScale(double latitude, int levelOfDetail, int screenDpi)
    71 {
    72 return GroundResolution(latitude, levelOfDetail) * screenDpi / 0.0254;
    73 }
    74
    75
    76
    77 /// <summary>
    78 /// Converts a point from latitude/longitude WGS-84 coordinates (in degrees)
    79 /// into pixel XY coordinates at a specified level of detail.
    80 /// </summary>
    81 /// <param name="latitude">Latitude of the point, in degrees.</param>
    82 /// <param name="longitude">Longitude of the point, in degrees.</param>
    83 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    84 /// to 23 (highest detail).</param>
    85 /// <param name="pixelX">Output parameter receiving the X coordinate in pixels.</param>
    86 /// <param name="pixelY">Output parameter receiving the Y coordinate in pixels.</param>
    87 public static void LatLongToPixelXY(double latitude, double longitude, int levelOfDetail, out int pixelX, out int pixelY)
    88 {
    89 latitude = Clip(latitude, MinLatitude, MaxLatitude);
    90 longitude = Clip(longitude, MinLongitude, MaxLongitude);
    91
    92 double x = (longitude + 180) / 360;
    93 double sinLatitude = Math.Sin(latitude * Math.PI / 180);
    94 double y = 0.5 - Math.Log((1 + sinLatitude) / (1 - sinLatitude)) / (4 * Math.PI);
    95
    96 uint mapSize = MapSize(levelOfDetail);
    97 pixelX = (int) Clip(x * mapSize + 0.5, 0, mapSize - 1);
    98 pixelY = (int) Clip(y * mapSize + 0.5, 0, mapSize - 1);
    99 }
    100
    101
    102
    103 /// <summary>
    104 /// Converts a pixel from pixel XY coordinates at a specified level of detail
    105 /// into latitude/longitude WGS-84 coordinates (in degrees).
    106 /// </summary>
    107 /// <param name="pixelX">X coordinate of the point, in pixels.</param>
    108 /// <param name="pixelY">Y coordinates of the point, in pixels.</param>
    109 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    110 /// to 23 (highest detail).</param>
    111 /// <param name="latitude">Output parameter receiving the latitude in degrees.</param>
    112 /// <param name="longitude">Output parameter receiving the longitude in degrees.</param>
    113 public static void PixelXYToLatLong(int pixelX, int pixelY, int levelOfDetail, out double latitude, out double longitude)
    114 {
    115 double mapSize = MapSize(levelOfDetail);
    116 double x = (Clip(pixelX, 0, mapSize - 1) / mapSize) - 0.5;
    117 double y = 0.5 - (Clip(pixelY, 0, mapSize - 1) / mapSize);
    118
    119 latitude = 90 - 360 * Math.Atan(Math.Exp(-y * 2 * Math.PI)) / Math.PI;
    120 longitude = 360 * x;
    121 }
    122
    123
    124
    125 /// <summary>
    126 /// Converts pixel XY coordinates into tile XY coordinates of the tile containing
    127 /// the specified pixel.
    128 /// </summary>
    129 /// <param name="pixelX">Pixel X coordinate.</param>
    130 /// <param name="pixelY">Pixel Y coordinate.</param>
    131 /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
    132 /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
    133 public static void PixelXYToTileXY(int pixelX, int pixelY, out int tileX, out int tileY)
    134 {
    135 tileX = pixelX / 256;
    136 tileY = pixelY / 256;
    137 }
    138
    139
    140
    141 /// <summary>
    142 /// Converts tile XY coordinates into pixel XY coordinates of the upper-left pixel
    143 /// of the specified tile.
    144 /// </summary>
    145 /// <param name="tileX">Tile X coordinate.</param>
    146 /// <param name="tileY">Tile Y coordinate.</param>
    147 /// <param name="pixelX">Output parameter receiving the pixel X coordinate.</param>
    148 /// <param name="pixelY">Output parameter receiving the pixel Y coordinate.</param>
    149 public static void TileXYToPixelXY(int tileX, int tileY, out int pixelX, out int pixelY)
    150 {
    151 pixelX = tileX * 256;
    152 pixelY = tileY * 256;
    153 }
    154
    155
    156
    157 /// <summary>
    158 /// Converts tile XY coordinates into a QuadKey at a specified level of detail.
    159 /// </summary>
    160 /// <param name="tileX">Tile X coordinate.</param>
    161 /// <param name="tileY">Tile Y coordinate.</param>
    162 /// <param name="levelOfDetail">Level of detail, from 1 (lowest detail)
    163 /// to 23 (highest detail).</param>
    164 /// <returns>A string containing the QuadKey.</returns>
    165 public static string TileXYToQuadKey(int tileX, int tileY, int levelOfDetail)
    166 {
    167 StringBuilder quadKey = new StringBuilder();
    168 for (int i = levelOfDetail; i > 0; i--)
    169 {
    170 char digit = '0';
    171 int mask = 1 << (i - 1);
    172 if ((tileX & mask) != 0)
    173 {
    174 digit++;
    175 }
    176 if ((tileY & mask) != 0)
    177 {
    178 digit++;
    179 digit++;
    180 }
    181 quadKey.Append(digit);
    182 }
    183 return quadKey.ToString();
    184 }
    185
    186
    187
    188 /// <summary>
    189 /// Converts a QuadKey into tile XY coordinates.
    190 /// </summary>
    191 /// <param name="quadKey">QuadKey of the tile.</param>
    192 /// <param name="tileX">Output parameter receiving the tile X coordinate.</param>
    193 /// <param name="tileY">Output parameter receiving the tile Y coordinate.</param>
    194 /// <param name="levelOfDetail">Output parameter receiving the level of detail.</param>
    195 public static void QuadKeyToTileXY(string quadKey, out int tileX, out int tileY, out int levelOfDetail)
    196 {
    197 tileX = tileY = 0;
    198 levelOfDetail = quadKey.Length;
    199 for (int i = levelOfDetail; i > 0; i--)
    200 {
    201 int mask = 1 << (i - 1);
    202 switch (quadKey[levelOfDetail - i])
    203 {
    204 case '0':
    205 break;
    206
    207 case '1':
    208 tileX |= mask;
    209 break;
    210
    211 case '2':
    212 tileY |= mask;
    213 break;
    214
    215 case '3':
    216 tileX |= mask;
    217 tileY |= mask;
    218 break;
    219
    220 default:
    221 throw new ArgumentException("Invalid QuadKey digit sequence.");
    222 }
    223 }
    224 }
    225 }
    226 }
  • 相关阅读:
    设计者模式详解--代理模式
    设计者模式详解--适配器模式
    设计者模式详解--原型模式
    设计者模式详解--建造者模式
    设计者模式详解--单例模式
    设计者模式详解--抽象工厂模式
    设计者模式详解--工厂方法模式
    angularjs 选项卡 --- 自定义属性
    AngularJS 自定义指令
    Jquery中的prop()方法 全选或全不选
  • 原文地址:https://www.cnblogs.com/liongis/p/1873762.html
Copyright © 2020-2023  润新知