正确的题解
首先我们都知道这题要用线段树做。考虑维护靠左边的answer,靠右边的answer,和整个区间的answer,那么就珂以维护这道题目了。
这里比较复杂的有下传操作和上传操作。
上传
void pushUp(int pos, int l, int r){
seg[pos].ans = max(seg[pos << 1].rans + seg[pos << 1 | 1].lans, max(seg[pos << 1].ans, seg[pos << 1 | 1].ans));
int mid = (l + r) >> 1;
if (seg[pos << 1].ans == mid - l + 1)
seg[pos].lans = seg[pos << 1 | 1].lans + seg[pos << 1].ans;
else
seg[pos].lans = seg[pos << 1].lans;
if (seg[pos << 1 | 1].ans == r - mid)
seg[pos].rans = seg[pos << 1].rans + seg[pos << 1 | 1].ans;
else
seg[pos].rans = seg[pos << 1 | 1].rans;
}
下传
void pushDown(int pos, int l, int r){
if (!seg[pos].lazy){
seg[pos << 1].lazy = seg[pos << 1 | 1].lazy = 0;
int mid = (l + r) >> 1;
seg[pos << 1].ans = seg[pos << 1].lans = seg[pos << 1].rans = mid - l + 1;
seg[pos << 1 | 1].ans = seg[pos << 1 | 1].lans = seg[pos << 1 | 1].rans = r - mid;
}
else if (seg[pos].lazy == 1){
seg[pos << 1].lazy = seg[pos << 1 | 1].lazy = 1;
seg[pos << 1].ans = seg[pos << 1].lans = seg[pos << 1].rans = 0;
seg[pos << 1 | 1].ans = seg[pos << 1 | 1].lans = seg[pos << 1 | 1].rans = 0;
}
seg[pos].lazy = -1;
}
正解代码
#include <cstdio>
#include <algorithm>
using namespace std;
int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
}
struct Node{
int ans, lans, rans;
int lazy;
} seg[200000];
void pushUp(int pos, int l, int r){
seg[pos].ans = max(seg[pos << 1].rans + seg[pos << 1 | 1].lans, max(seg[pos << 1].ans, seg[pos << 1 | 1].ans));
int mid = (l + r) >> 1;
if (seg[pos << 1].ans == mid - l + 1)
seg[pos].lans = seg[pos << 1 | 1].lans + seg[pos << 1].ans;
else
seg[pos].lans = seg[pos << 1].lans;
if (seg[pos << 1 | 1].ans == r - mid)
seg[pos].rans = seg[pos << 1].rans + seg[pos << 1 | 1].ans;
else
seg[pos].rans = seg[pos << 1 | 1].rans;
}
void pushDown(int pos, int l, int r){
if (!seg[pos].lazy){
seg[pos << 1].lazy = seg[pos << 1 | 1].lazy = 0;
int mid = (l + r) >> 1;
seg[pos << 1].ans = seg[pos << 1].lans = seg[pos << 1].rans = mid - l + 1;
seg[pos << 1 | 1].ans = seg[pos << 1 | 1].lans = seg[pos << 1 | 1].rans = r - mid;
}
else if (seg[pos].lazy == 1){
seg[pos << 1].lazy = seg[pos << 1 | 1].lazy = 1;
seg[pos << 1].ans = seg[pos << 1].lans = seg[pos << 1].rans = 0;
seg[pos << 1 | 1].ans = seg[pos << 1 | 1].lans = seg[pos << 1 | 1].rans = 0;
}
seg[pos].lazy = -1;
}
void build(int pos, int l, int r){
if (l == r){
seg[pos].ans = seg[pos].lans = seg[pos].rans = 1;
seg[pos].lazy = -1;
return ;
}
int mid = (l + r) >> 1;
build(pos << 1, l, mid), build(pos << 1 | 1, mid + 1, r);
pushUp(pos, l, r);
}
void modify(int pos, int l, int r, int x, int y, int val){
if (x <= l && r <= y){
if (val) seg[pos].ans = seg[pos].lans = seg[pos].rans = 0;
else seg[pos].ans = seg[pos].lans = seg[pos].rans = r - l + 1;
seg[pos].lazy = val;
return ;
}
pushDown(pos, l, r); int mid = (l + r) >> 1;
if (x <= mid) modify(pos << 1, l, mid, x, y, val);
if (y > mid) modify(pos << 1 | 1, mid + 1, r, x, y, val);
pushUp(pos, l, r);
}
int query(int pos, int l, int r, int k){
pushDown(pos, l, r); if (l == r) return l;
int mid = (l + r) >> 1;
if (seg[pos << 1].ans >= k) return query(pos << 1, l, mid, k);
if (seg[pos << 1].rans + seg[pos << 1 | 1].lans >= k) return (mid - seg[pos << 1].rans + 1);
else return query(pos << 1 | 1, mid + 1, r, k);
}
int main(){
int n = read(), m = read();
build(1, 1, n);
for (int i = 1; i <= m; ++i){
int op = read(), x, y;
if (op == 1){
x = read();
if(seg[1].ans >= x){
int l = query(1, 1, n, x);
printf("%d
", l);
modify(1, 1, n, l, l + x - 1, 1);
}
else
puts("0");
}
else{
x = read(), y = read();
modify(1, 1, n, x, x + y - 1, 0);
}
}
return 0;
}
提供一种新的得高分思路
这是我发这篇题解的目的,我们看到这熟悉的区间推平操作,很容易就想到了珂朵莉树,也就是我一开始的打法,但是由于数据的原因珂树T了,伤心.jpg。
我们考虑珂朵莉树的查询,显然我们只需要更改一下查询即可
int query(int k){
int l = 1, cnt = 0;
for (set<Node>::iterator it = st.begin(); it != st.end(); ++it){
if (it->val == 1){
l = it->r + 1;
cnt = 0;
}
else{
cnt += it->r - it->l + 1;
if (cnt >= k) return l;
}
}
return -1;
}
我们考虑把连在一起的块的值为零的区间的长度加起来,取第一个满足条件的端点,然后就珂以做出来啦。
可怜的92分代码
#include <cstdio>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
using namespace std;
int read(){
int x = 0; int zf = 1; char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar();
while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
}
//build
struct Node{
int l, r;
mutable bool val;
Node(int a = -1, int b = -1, int c = 0){
l = a, r = b, val = c;
}
bool operator < (const Node &a) const{
return l < a.l;
}
};
set<Node> st;
//modify
set<Node>::iterator split(int pos){
set<Node>::iterator it = st.lower_bound(Node(pos));
if (it != st.end() && it->l == pos) return it;
--it; Node tmp = *it; st.erase(it);
st.insert(Node(tmp.l, pos - 1, tmp.val));
return st.insert(Node(pos, tmp.r, tmp.val)).first; //first return iterator
}
void assign(int l, int r, bool val){
set<Node>::iterator itr = split(r + 1), itl = split(l);
st.erase(itl, itr);
st.insert((Node){l, r, val});
}
//query
int query(int k){
int l = 1, cnt = 0;
for (set<Node>::iterator it = st.begin(); it != st.end(); ++it){
if (it->val == 1){
l = it->r + 1;
cnt = 0;
}
else{
cnt += it->r - it->l + 1;
if (cnt >= k) return l;
}
}
return -1;
}
int main(){
int n = read(), m = read(); st.insert((Node){1, n, 0});
while (m--){
int op = read();
if (op == 1){
int x = read(), pos = query(x);
if (pos == -1) puts("0");
else{
printf("%d
", pos);
assign(pos, pos + x - 1, 1);
}
}
else if (op == 2){
int x = read(), y = read();
assign(x, x + y - 1, 0);
}
}
return 0;
}