• Leetcode | Unique Paths I & II


    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

    The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

    How many possible unique paths are there?

    前面有摘过Unique Path I的解法。n天之后我自己又重写一遍,如下。看来自己的算法能力还是有长进的。

     1 class Solution {
     2 public:
     3     int uniquePaths(int m, int n) {
     4         vector<int> dp(n + 1, 0);
     5         dp[n] = 1;
     6         for (int i = m - 1; i >= 0; --i) {
     7             for (int j = n - 1; j >= 0; --j) {
     8                 dp[j] += dp[j + 1];
     9             }
    10             dp[n] = 0;
    11         }
    12         
    13         return dp[0];
    14     }
    15 };

    用一维的dp去优化二维的话,记得每个位置的初始值。这里最边边dp[n]每次都记得还原到0;(第10行)

    Unique Paths II

     

    Follow up for "Unique Paths":

    Now consider if some obstacles are added to the grids. How many unique paths would there be?

    An obstacle and empty space is marked as 1 and 0 respectively in the grid.

    For example,
    There is one obstacle in the middle of a 3x3 grid as illustrated below.

    [
    [0,0,0],
    [0,1,0],
    [0,0,0]
    ]
    The total number of unique paths is 2.

    代码差不多,这个只要有障碍的时候,那个位置设置为0就行了。

     1 class Solution {
     2 public:
     3     int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
     4         int m = obstacleGrid.size();
     5         if (m <= 0) return 0;
     6         int n = obstacleGrid[0].size();
     7         if (n <= 0) return 0;
     8         
     9         vector<int> dp(n + 1, 0);
    10         dp[n] = 1;
    11         for (int i = m - 1; i >= 0; --i) {
    12             for (int j = n - 1; j >= 0; --j) {
    13                 if (obstacleGrid[i][j] == 1) dp[j] = 0;
    14                 else dp[j] += dp[j + 1];
    15             }
    16             dp[n] = 0;
    17         }
    18         
    19         return dp[0];
    20     }
    21 };
  • 相关阅读:
    js-高级06-正则
    js-高级05-javaScript处理机制
    js-高级04-函数高级应用
    js-高级03-面向对象的继承
    js-高级02-贪吃蛇案例分析
    js-高级01面向对象及创建对象
    js-API 06 高级动画二
    js-API 05 高级动画
    对象数组 数组对象 增删改查 数组
    jQuery ajax请求 一般请求和自定义请求
  • 原文地址:https://www.cnblogs.com/linyx/p/3721003.html
Copyright © 2020-2023  润新知