• 基于tensorflow的花卉识别


    一、思路

    二、进程

    三、参考

    1.denny的学习专栏

    这位大佬的博客里有关于tensorflow的很多内容,并且有花卉识别项目的源代码和介绍,很有参考价值。为了内容丢失,已装在到博客里。

    2.Plain and Simple Estimators

    这个小视频https://zhuanlan.zhihu.com/p/30722498简单介绍了该项目,并简单讲解了代码,github已follow.

    四、成功案列

    (1)

    前言

    本文为一个利用卷积神经网络实现花卉分类的项目,因此不会过多介绍卷积神经网络的基本知识。此项目建立在了解卷积神经网络进行图像分类的原理上进行的。

    项目简介

    本项目为一个图像识别项目,基于tensorflow,利用CNN网络实现识别四种花的种类。
    使用tensorflow进行一个完整的图像识别。项目包括对数据集的处理,从硬盘读取数据,CNN网络的定义,训练过程以及利用实际测试数据对训练好的模型结果进行测试功能。

    准备训练数据。

    训练数据存放路径为: ‘D:/ML/flower/input_data’
    训练模型存储路径为:'D:/ML/flower/save/‘
    测试样本路径及文件名为:'D:/ML/flower/flower_photos/roses/**.jpg‘
    测试用图片文件从训练数据中任意拷贝一张即可。

    训练数据如图
    在这里插入图片描述
    以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

    在这里插入图片描述

    模块组成

    示例代码主要由四个模块组成:
    input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
    model.py——模型模块,构建完整的CNN模型
    train.py——训练模块,训练模型,并保存训练模型结果
    test.py——测试模块,测试模型对图片识别的准确度

    项目模块执行顺序

    • 运行train.py开始训练。
    • 训练完成后- 运行test.py,查看实际测试结果

    input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

    import os
    import math
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    # -----------------生成图片路径和标签的List------------------------------------
    train_dir = 'D:/ML/flower/input_data'
    
    roses = []
    label_roses = []
    tulips = []
    label_tulips = []
    dandelion = []
    label_dandelion = []
    sunflowers = []
    label_sunflowers = []

    定义函数get_files,获取图片列表及标签列表

    # step1:获取所有的图片路径名,存放到
    # 对应的列表中,同时贴上标签,存放到label列表中。
    def get_files(file_dir, ratio):
        for file in os.listdir(file_dir + '/roses'):
            roses.append(file_dir + '/roses' + '/' + file)
            label_roses.append(0)
        for file in os.listdir(file_dir + '/tulips'):
            tulips.append(file_dir + '/tulips' + '/' + file)
            label_tulips.append(1)
        for file in os.listdir(file_dir + '/dandelion'):
            dandelion.append(file_dir + '/dandelion' + '/' + file)
            label_dandelion.append(2)
        for file in os.listdir(file_dir + '/sunflowers'):
            sunflowers.append(file_dir + '/sunflowers' + '/' + file)
            label_sunflowers.append(3)
            # step2:对生成的图片路径和标签List做打乱处理
        image_list = np.hstack((roses, tulips, dandelion, sunflowers))
        label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))
    
        # 利用shuffle打乱顺序
        temp = np.array([image_list, label_list])
        temp = temp.transpose()
        np.random.shuffle(temp)
    
    
        # 将所有的img和lab转换成list
        all_image_list = list(temp[:, 0])
        all_label_list = list(temp[:, 1])
            # 将所得List分为两部分,一部分用来训练tra,一部分用来测试val
        # ratio是测试集的比例
        n_sample = len(all_label_list)
        n_val = int(math.ceil(n_sample * ratio))  # 测试样本数
        n_train = n_sample - n_val  # 训练样本数
    
        tra_images = all_image_list[0:n_train]
        tra_labels = all_label_list[0:n_train]
        tra_labels = [int(float(i)) for i in tra_labels]
        val_images = all_image_list[n_train:-1]
        val_labels = all_label_list[n_train:-1]
        val_labels = [int(float(i)) for i in val_labels]
    
        return tra_images, tra_labels, val_images, val_labels
    
    

    定义函数get_batch,生成训练批次数据

    # --------------------生成Batch----------------------------------------------
    
    # step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
    # 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
    #   image_W, image_H, :设置好固定的图像高度和宽度
    #   设置batch_size:每个batch要放多少张图片
    #   capacity:一个队列最大多少
    定义函数get_batch,生成训练批次数据
    def get_batch(image, label, image_W, image_H, batch_size, capacity):
        # 转换类型
        image = tf.cast(image, tf.string)
        label = tf.cast(label, tf.int32)
    
        # make an input queue
        input_queue = tf.train.slice_input_producer([image, label])
    
        label = input_queue[1]
        image_contents = tf.read_file(input_queue[0])  # read img from a queue
    
        # step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
        image = tf.image.decode_jpeg(image_contents, channels=3)
            # step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
        image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
        image = tf.image.per_image_standardization(image)
    
        # step4:生成batch
        # image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32
        # label_batch: 1D tensor [batch_size], dtype=tf.int32
        image_batch, label_batch = tf.train.batch([image, label],
                                                  batch_size=batch_size,
                                                  num_threads=32,
                                                  capacity=capacity)
        # 重新排列label,行数为[batch_size]
        label_batch = tf.reshape(label_batch, [batch_size])
        image_batch = tf.cast(image_batch, tf.float32)
        return image_batch, label_batch
        
    
    

    model.py——CN模型构建

    import tensorflow as tf
    
    #定义函数infence,定义CNN网络结构
    #卷积神经网络,卷积加池化*2,全连接*2,softmax分类
    #卷积层1
    def inference(images, batch_size, n_classes):
        with tf.variable_scope('conv1') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),
                                 name = 'weights',dtype=tf.float32)
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),
                                 name='biases', dtype=tf.float32)
            conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv1 = tf.nn.relu(pre_activation, name=scope.name)
    
        # 池化层1
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。
    
    
        with tf.variable_scope('pooling1_lrn') as scope:
            pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
    
        # 卷积层2
        # 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv2') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),
                                 name='biases', dtype=tf.float32)
    
            conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv2 = tf.nn.relu(pre_activation, name='conv2')
    
        # 池化层2
        # 3x3最大池化,步长strides为2,池化后执行lrn()操作,
        # pool2 and norm2
        with tf.variable_scope('pooling2_lrn') as scope:
            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')
            pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')
    
        # 全连接层3
        # 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
        with tf.variable_scope('local3') as scope:
            reshape = tf.reshape(pool2, shape=[batch_size, -1])
            dim = reshape.get_shape()[1].value
            weights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    
        # 全连接层4
        # 128个神经元,激活函数relu()
        with tf.variable_scope('local4') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),
                                  name='weights', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),
                                 name='biases', dtype=tf.float32)
    
            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
    
        # dropout层
        #    with tf.variable_scope('dropout') as scope:
        #        drop_out = tf.nn.dropout(local4, 0.8)
    
        # Softmax回归层
        # 将前面的FC层输出,做一个线性回归,计算出每一类的得分
        with tf.variable_scope('softmax_linear') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),
                                  name='softmax_linear', dtype=tf.float32)
    
            biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),
                                 name='biases', dtype=tf.float32)
    
            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
    
        return softmax_linear
    
    
    # -----------------------------------------------------------------------------
    # loss计算
    # 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
    # 返回参数:loss,损失值
    def losses(logits, labels):
        with tf.variable_scope('loss') as scope:
            cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,
                                                                           name='xentropy_per_example')
            loss = tf.reduce_mean(cross_entropy, name='loss')
            tf.summary.scalar(scope.name + '/loss', loss)
        return loss
    
    
    # --------------------------------------------------------------------------
    # loss损失值优化
    # 输入参数:loss。learning_rate,学习速率。
    # 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
    def trainning(loss, learning_rate):
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
            global_step = tf.Variable(0, name='global_step', trainable=False)
            train_op = optimizer.minimize(loss, global_step=global_step)
        return train_op
    
    
    # -----------------------------------------------------------------------
    # 评价/准确率计算
    # 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
    # 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
    def evaluation(logits, labels):
        with tf.variable_scope('accuracy') as scope:
            correct = tf.nn.in_top_k(logits, labels, 1)
            correct = tf.cast(correct, tf.float16)
            accuracy = tf.reduce_mean(correct)
            tf.summary.scalar(scope.name + '/accuracy', accuracy)
        return accuracy
    
    

    train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练

    import input_data
    import model
    
    # 变量声明
    N_CLASSES = 4  # 四种花类型
    IMG_W = 64  # resize图像,太大的话训练时间久
    IMG_H = 64
    BATCH_SIZE = 20
    CAPACITY = 200
    MAX_STEP = 2000  # 一般大于10K
    learning_rate = 0.0001  # 一般小于0.0001
    
    # 获取批次batch
    train_dir = 'F:/input_data'  # 训练样本的读入路径
    logs_train_dir = 'F:/save'  # logs存储路径
    
    # train, train_label = input_data.get_files(train_dir)
    train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)
    # 训练数据及标签
    train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    # 测试数据及标签
    val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    
    # 训练操作定义
    train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = model.losses(train_logits, train_label_batch)
    train_op = model.trainning(train_loss, learning_rate)
    train_acc = model.evaluation(train_logits, train_label_batch)
    
    # 测试操作定义
    test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)
    test_loss = model.losses(test_logits, val_label_batch)
    test_acc = model.evaluation(test_logits, val_label_batch)
    
    # 这个是log汇总记录
    summary_op = tf.summary.merge_all()
    
    # 产生一个会话
    sess = tf.Session()
    # 产生一个writer来写log文件
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)
    # val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)
    # 产生一个saver来存储训练好的模型
    saver = tf.train.Saver()
    # 所有节点初始化
    sess.run(tf.global_variables_initializer())
    # 队列监控
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
    
    # 进行batch的训练
    try:
        # 执行MAX_STEP步的训练,一步一个batch
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
    
            # 每隔50步打印一次当前的loss以及acc,同时记录log,写入writer
            if step % 10 == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            # 每隔100步,保存一次训练好的模型
            if (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
    
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
    
    finally:
        coord.request_stop()
    
    

    test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果

    import matplotlib.pyplot as plt
    import model
    from input_data import get_files
    
    # 获取一张图片
    def get_one_image(train):
        # 输入参数:train,训练图片的路径
        # 返回参数:image,从训练图片中随机抽取一张图片
        n = len(train)
        ind = np.random.randint(0, n)
        img_dir = train[ind]  # 随机选择测试的图片
    
        img = Image.open(img_dir)
        plt.imshow(img)
        plt.show()
        image = np.array(img)
        return image
    
    
    # 测试图片
    def evaluate_one_image(image_array):
        with tf.Graph().as_default():
            BATCH_SIZE = 1
            N_CLASSES = 4
    
            image = tf.cast(image_array, tf.float32)
            image = tf.image.per_image_standardization(image)
            image = tf.reshape(image, [1, 64, 64, 3])
    
            logit = model.inference(image, BATCH_SIZE, N_CLASSES)
    
            logit = tf.nn.softmax(logit)
    
            x = tf.placeholder(tf.float32, shape=[64, 64, 3])
    
            # you need to change the directories to yours.
            logs_train_dir = 'F:/save/'
    
            saver = tf.train.Saver()
    
            with tf.Session() as sess:
    
                print("Reading checkpoints...")
                ckpt = tf.train.get_checkpoint_state(logs_train_dir)
                if ckpt and ckpt.model_checkpoint_path:
                    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                    saver.restore(sess, ckpt.model_checkpoint_path)
                    print('Loading success, global_step is %s' % global_step)
                else:
                    print('No checkpoint file found')
    
                prediction = sess.run(logit, feed_dict={x: image_array})
                max_index = np.argmax(prediction)
                if max_index == 0:
                    result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])
                elif max_index == 1:
                    result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])
                elif max_index == 2:
                    result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])
                else:
                    result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])
                return result
    
    
    # ------------------------------------------------------------------------
    
    if __name__ == '__main__':
        img = Image.open('F:/input_data/dandelion/1451samples2.jpg')
        plt.imshow(img)
        plt.show()
        imag = img.resize([64, 64])
        image = np.array(imag)
        print(evaluate_one_image(image))
    
    

    项目执行结果:

    1.执行train模块,结果如下:
    在这里插入图片描述
    同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
    在这里插入图片描述
    2.执行test模块,结果如下:
    显示一张测试用的图片
    在这里插入图片描述
    关闭显示的测试图片后,console查看测试结果如下:
    在这里插入图片描述
    至此我们对整个项目流程做一个总结:
    图片预处理模块:对获得的花卉图片训练数据,进行预处理,构造训练用数据结构
    训练模块:利用Tensorflow实现CNN(神经网络算法)模型,经过两层卷积-池化处理,并使用梯度下降算法作为优化器、Softmax算法作为分类器、平方损失函数(最小二乘法, Ordinary Least Squares)作为优化器,构建训练模型,利用训练数据对模型进行训练,最终得到训练后的模型数据,并以文件形式存储至本机。
    分类准确度验证模块:利用Tensorflow的reduce_mean方法作为评估模型,对构建的花卉分类模型分类准确性进行验证。
    模型测试模块:使用测试集数据,对构建并训练后的分类模型进行测试,验证实际数据的测试准确度。

    具体代码以及附件可在我的个人GitHub上下载
    我的githubworkspace

    原文地址:https://blog.csdn.net/CrimsonK/article/details/100190807

    二、https://www.cnblogs.com/lijitao/protected/articles/12173520.html

  • 相关阅读:
    验证码图片识别
    DataSnap下的分包获取
    uniGUI试用笔记(十)
    EControl的安装
    Cesium应用篇:3控件(6) FullScreen/ VR / Home
    Cesium应用篇:3控件(5)CesiumInspector
    Cesium应用篇:3控件(4)Geocoder
    Cesium应用篇:3控件(3)SelectionIndicator& InfoBox
    Cesium应用篇:3控件(2)BaseLayerPicker
    Cesium应用篇:3控件(1)Clock
  • 原文地址:https://www.cnblogs.com/lijitao/p/12116131.html
Copyright © 2020-2023  润新知