• [Python] Advanced features


    Slicing

    1
    2
    3
    4
    5
    L[:10:2] 
    # [0, 2, 4, 6, 8]
    L[::5] # 所有数,每5个取一个
    # [0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
    L[:] # copy L

    Iterating

    1
    2
    for x, y in [(1, 1), (2, 4), (3, 9)]:
    print(x, y)

    List Comprehension

    A list comprehension allows you to easily create a list based on some processing or selection criteria.

    1
    2
    3
    4
    5
    myList = [x * x for x in range(1, 11) if x % 2 != 0]
    [ch.upper() for ch in 'comprehension' if ch not in 'aeiou']

    combinations = [m + n for m in 'ABC' for n in 'XYZ']
    # ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

    Generator

    Referennce: https://www.liaoxuefeng.com/wiki/1016959663602400/1017318207388128

    Create a generator:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    L = [x * x for x in range(10)]
    L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    g = (x * x for x in range(10))
    g
    <generator object <genexpr> at 0x1022ef630>
    next(g)
    0
    >>> for n in g:
    print(n)

    Create a generator for fibbonacci:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    def (k): # print first k fibbonacci number
    n, a, b = 0, 0, 1
    while n < k:
    print(b)
    a, b = b, a + b
    n = n + 1
    return 'done'

    def (max):
    n, a, b = 0, 0, 1
    while n < max:
    yield b # Change print to yield, and fib would be a generator
    a, b = b, a + b
    n = n + 1
    return 'done'

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>

    generator和函数的执行流程不一样。函数是顺序执行,遇到return 大专栏  [Python] Advanced features语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    def odd():
    print('step 1')
    yield 1
    print('step 2')
    yield(3)
    print('step 3')
    yield(5)

    >>> o = odd()
    >>> next(o)
    step 1
    1
    >>> next(o)
    step 2
    3
    >>> next(o)
    step 3
    5
    >>> next(o)
    Traceback (most recent call last):
    File "<stdin>", line 1, in <module>
    StopIteration

    118. Pascal’s Triangle

    Leetcode: https://leetcode.com/problems/pascals-triangle/

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    def generate(self, numRows):
    """
    :type numRows: int
    :rtype: List[List[int]]
    """
    def row(num):
    n, prev, cur = 1, [1], [1, 1]
    while n <= num:
    yield prev
    prev = cur
    temp = [0] + prev + [0]
    cur = [temp[i] + temp[i - 1] for i in range(1, len(temp))]
    n += 1
    return [r for r in row(numRows)]

    Iterator

    可以直接作用于for循环的对象统称为可迭代对象:Iterable. list, set, dict, str, tuple.

    而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

    All generators are Interator, not all Iterable are Iterator.(list, set, dict, str, tuple)

    But we can use iter() to transform iterables into interator.

    1
    2
    3
    4
    >>> isinstance(iter([]), Iterator)
    True
    >>> isinstance(iter('abc'), Iterator)
    True

    Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

    Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

  • 相关阅读:
    PHP中有多态么
    【Android】九宫格实现
    采用xshell链路本地虚拟机Linux
    读取资源文件的工具.
    dede织梦背景经常使用标签
    PHP第三个教训 PHP基本数据类型
    Linux经常使用的命令(必看)
    易Android登录Demo
    [2013山东ACM]省赛 The number of steps (可能DP,数学期望)
    web开发性能优化---UI接口章
  • 原文地址:https://www.cnblogs.com/lijianming180/p/12366611.html
Copyright © 2020-2023  润新知