• [LeetCode] 654. Maximum Binary Tree 最大二叉树


    Given an integer array with no duplicates. A maximum tree building on this array is defined as follow:

    1. The root is the maximum number in the array.
    2. The left subtree is the maximum tree constructed from left part subarray divided by the maximum number.
    3. The right subtree is the maximum tree constructed from right part subarray divided by the maximum number.

    Construct the maximum tree by the given array and output the root node of this tree.

    Example 1:

    Input: [3,2,1,6,0,5]
    Output: return the tree root node representing the following tree:
    
          6
        /   
       3     5
            / 
         2  0   
           
            1

    Note:

    1. The size of the given array will be in the range [1,1000].

    给一个数组,以数组中的最大值为根结点创建一个最大二叉树,分隔出的左右部分再分别创建最大二叉树。

    解法:递归

    Java:

    public class Solution {
        public TreeNode constructMaximumBinaryTree(int[] nums) {
            if (nums == null) return null;
            return build(nums, 0, nums.length - 1);
        }
        
        private TreeNode build(int[] nums, int start, int end) {
            if (start > end) return null;
            
            int idxMax = start;
            for (int i = start + 1; i <= end; i++) {
                if (nums[i] > nums[idxMax]) {
                    idxMax = i;
                }
            }
            
            TreeNode root = new TreeNode(nums[idxMax]);
            
            root.left = build(nums, start, idxMax - 1);
            root.right = build(nums, idxMax + 1, end);
            
            return root;
        }
    }
    

    Java:

    public TreeNode constructMaximumBinaryTree(int[] nums) {
            return construct(nums, 0, nums.length);
    }
    
    TreeNode construct(int[] nums, int l, int r) {
            if (l >= r) return null;
            int maxi = l;
            for (int i = l + 1; i < r; i++) if (nums[i] > nums[maxi]) maxi = i;
            TreeNode root = new TreeNode(nums[maxi]);
            root.left = construct(nums, l, maxi);
            root.right = construct(nums, maxi + 1, r);
            return root;
    }  

    Python:

    def constructMaximumBinaryTree(self, nums):
            if not nums:
                return None
            root, maxi = TreeNode(max(nums)), nums.index(max(nums))
            root.left = self.constructMaximumBinaryTree(nums[:maxi])
            root.right = self.constructMaximumBinaryTree(nums[maxi + 1:])
            return root  

    Python:

    # Time:  O(n)
    # Space: O(n)
    class TreeNode(object):
        def __init__(self, x):
            self.val = x
            self.left = None
            self.right = None
    
    
    class Solution(object):
        def constructMaximumBinaryTree(self, nums):
            """
            :type nums: List[int]
            :rtype: TreeNode
            """
            nodeStack = []
            for num in nums:
                node = TreeNode(num);
                while nodeStack and num > nodeStack[-1].val:
                    node.left = nodeStack.pop()
                if nodeStack:
                    nodeStack[-1].right = node
                nodeStack.append(node)
            return nodeStack[0]
    

    Python:

    class Solution(object):
        def constructMaximumBinaryTree(self, nums):
            """
            :type nums: List[int]
            :rtype: TreeNode
            """
            if not nums:
                return
    
            mx = float('-inf')
            mx_index = 0
            for i in range(len(nums)):
                if nums[i] > mx:
                    mx = nums[i]
                    mx_index = i
           
            root = TreeNode(mx)
            if mx_index > 0:
                root.left = self.constructMaximumBinaryTree(nums[:mx_index])
            if mx_index < len(nums) - 1:
                root.right = self.constructMaximumBinaryTree(nums[mx_index+1:])
            
            return root  

    C++:

    class Solution {
    public:
        TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
            if (nums.empty()) return NULL;
            int mx = INT_MIN, mx_idx = 0;
            for (int i = 0; i < nums.size(); ++i) {
                if (mx < nums[i]) {
                    mx = nums[i];
                    mx_idx = i;
                }
            }
            TreeNode *node = new TreeNode(mx);
            vector<int> leftArr = vector<int>(nums.begin(), nums.begin() + mx_idx);
            vector<int> rightArr = vector<int>(nums.begin() + mx_idx + 1, nums.end());
            node->left = constructMaximumBinaryTree(leftArr);
            node->right = constructMaximumBinaryTree(rightArr);
            return node;
        }
    };
    

    C++:  

    class Solution {
    public:
        TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
            if (nums.empty()) return NULL;
            return helper(nums, 0, nums.size() - 1);
        }
        TreeNode* helper(vector<int>& nums, int left, int right) {
            if (left > right) return NULL;
            int mid = left;
            for (int i = left + 1; i <= right; ++i) {
                if (nums[i] > nums[mid]) {
                    mid = i;
                }
            }
            TreeNode *node = new TreeNode(nums[mid]);
            node->left = helper(nums, left, mid - 1);
            node->right = helper(nums, mid + 1, right);
            return node;
        }
    };
    

    C++:  

    class Solution {
    public:
        TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
            vector<TreeNode*> v;
            for (int num : nums) {
                TreeNode *cur = new TreeNode(num);
                while (!v.empty() && v.back()->val < num) {
                    cur->left = v.back();
                    v.pop_back();
                }
                if (!v.empty()) {
                    v.back()->right = cur;
                }
                v.push_back(cur);
            }
            return v.front();
        }
    };
    

      

      

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    C#在窗口中ComboBox控件中加载数据库数据
    C#登录窗口(访问数据库)的制作,类文件的制作及使用
    C#通过窗体应用程序操作数据库(增删改查)
    C#在listview控件中显示数据库数据
    C#窗体与sql数据库的连接
    C#记事本的制作
    C#计算器的制作
    C#委托的初步理解
    使用Java语言开发微信公众平台(七)——音乐消息的回复
    使用Java语言开发微信公众平台(六)——获取access_token
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9854561.html
Copyright © 2020-2023  润新知