• [LeetCode] 382. Linked List Random Node 链表随机节点


    Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen.

    Follow up:
    What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?

    Example:

    // Init a singly linked list [1,2,3].
    ListNode head = new ListNode(1);
    head.next = new ListNode(2);
    head.next.next = new ListNode(3);
    Solution solution = new Solution(head);
    
    // getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning.
    solution.getRandom();

    给一个链表,随机返回一个节点。

    解法1:先统计出链表的长度,然后根据长度随机生成一个位置,然后从开头遍历到这个位置。但如果n很大就不好处理了。

    解法2: 水塘抽样 Reservoir sampling,是一系列的随机算法,其目的在于从包含n个项目的集合S中选取k个样本,其中n为一很大或未知的数量,尤其适用于不能把所有n个项目都存放到内存的情况。

    Java:

    public class Solution {
        
        ListNode head;
        Random random;
        
        public Solution(ListNode h) {
            head = h;       
            random = new Random();        
        }
        
        public int getRandom() {
            
            ListNode c = head;
            int r = c.val;
            for(int i=1;c.next != null;i++){
                
                c = c.next;
                if(random.nextInt(i + 1) == i) r = c.val;                        
            }
            
            return r;
        }
    } 

    Python:

    from random import randint
    
    class Solution(object):
    
        def __init__(self, head):
            """
            @param head The linked list's head. Note that the head is guanranteed to be not null, so it contains at least one node.
            :type head: ListNode
            """
            self.__head = head
    
    
        # Proof of Reservoir Sampling:
        # https://discuss.leetcode.com/topic/53753/brief-explanation-for-reservoir-sampling
        def getRandom(self):
            """
            Returns a random node's value.
            :rtype: int
            """
            reservoir = -1
            curr, n = self.__head, 0
            while curr:
                reservoir = curr.val if randint(1, n+1) == 1 else reservoir
                curr, n = curr.next, n+1
            return reservoir
    

    C++: 1

    class Solution {
    public:
        /** @param head The linked list's head. Note that the head is guanranteed to be not null, so it contains at least one node. */
        Solution(ListNode* head) {
            len = 0;
            ListNode *cur = head;
            this->head = head;
            while (cur) {
                ++len;
                cur = cur->next;
            }
        }
        
        /** Returns a random node's value. */
        int getRandom() {
            int t = rand() % len;
            ListNode *cur = head;
            while (t) {
                --t;
                cur = cur->next;
            }
            return cur->val;
        }
    private:
        int len;
        ListNode *head;
    };

    C++: 2

    class Solution {
    public:
        /** @param head The linked list's head. Note that the head is guanranteed to be not null, so it contains at least one node. */
        Solution(ListNode* head) {
            this->head = head;
        }
        
        /** Returns a random node's value. */
        int getRandom() {
            int res = head->val, i = 2;
            ListNode *cur = head->next;
            while (cur) {
                int j = rand() % i;
                if (j == 0) res = cur->val;
                ++i;
                cur = cur->next;
            }
            return res;
        }
    private:
        ListNode *head;
    };
    

      

    类似题目:

    398. Random Pick Index

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    Keras实例教程(2)
    Keras实例教程(1)
    tf.nn.l2_loss()的用法
    在tensorflow中使用batch normalization
    Tensorflow的LRN是怎么做的
    CNN卷积中多通道卷积的参数问题
    caffe学习网站
    交叉熵反向求导计算过程
    矩阵求导
    循环神经网络(RNN)模型与前向反向传播算法
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9739200.html
Copyright © 2020-2023  润新知