• 【机器学习算法】线性回归


    环境
      spark-1.6
      python3.5

    一、线性回归

    二、spark MLLIB案例

    package com.wjy.df
    
    import org.apache.spark.SparkConf
    import org.apache.spark.SparkContext
    import org.apache.spark.ml.regression.LinearRegressionModel
    import org.apache.spark.mllib.linalg.Vectors
    import org.apache.spark.mllib.regression.LabeledPoint
    import org.apache.spark.mllib.regression.LinearRegressionWithSGD
    
    /**
     * @author Administrator
     * 线性回归案例
     */
    object LinearRegression {
      def main(args: Array[String]): Unit = {
        val conf = new SparkConf().setMaster("local").setAppName("LinearRegressionWithSGD")
        val sc = new SparkContext(conf)
        sc.setLogLevel("WARN")
        //读取样本数据 官方样例文件
        val data = sc.textFile("./data/lpsa.data")
        val examples = data.map{ line => 
          val parts = line.split(",")
          val y = parts(0)
          val xs = parts(1)
          LabeledPoint(parts(0).toDouble,Vectors.dense(parts(1).split(" ").map(_.toDouble)))
        }.cache()
        val train2TestData = examples.randomSplit(Array(0.8, 0.2), 1)
        
        val lsr = new LinearRegressionWithSGD()
        //让训练出来的模型有w0参数,就是有截距
        lsr.setIntercept(true)
        
        //在每次迭代的过程中 梯度下降算法的下降步长大小    0.1 0.2 0.3 0.4
        val stepSize = 1
        //设置步长
        lsr.optimizer.setStepSize(stepSize)
        
        /*
         *  迭代次数
         *  训练一个多元线性回归模型收敛(停止迭代)条件:
         *      1、error值小于用户指定的error值
         *      2、达到一定的迭代次数
         */
        val numIterations = 100
        //设置迭代次数
        lsr.optimizer.setNumIterations(numIterations)
        
        //每一次下山后,是否计算所有样本的误差值,1代表所有样本,默认就是1.0
        val miniBatchFraction = 1
        lsr.optimizer.setMiniBatchFraction(miniBatchFraction)
       
        //使用80%数据训练
        val model = lsr.run(train2TestData(0))
        println(model.weights)
        println(model.intercept)
        
        //使用20%数据对样本进行测试
        val prediction = model.predict(train2TestData(1).map(_.features))
        val predictionAndLabel = prediction.zip(train2TestData(1).map(_.label))
       
        //打印前20条数据
        val print_predict = predictionAndLabel.take(20)
        println("prediction" + "	" + "label")
        for(i <- 0 to print_predict.length-1){
          println(print_predict(i)._1+"	"+print_predict(i)._2)
        }
        
        //计算测试集平均误差
        val loss = predictionAndLabel.map{
          case(p,v) =>
            val err = p-v
            Math.abs(err)
        }.reduce(_+_)
        val error = loss / train2TestData(1).count
        println("Test RMSE = " + error)
        
        // 模型保存
        val ModelPath = "model"
        model.save(sc, ModelPath)
        //val sameModel = LinearRegressionModel.load(sc,ModelPath)
        
        sc.stop()
      }
    }

    结果:

    [0.7296067051590363,0.23094665849041549,-0.1359562285885802,0.19004800201024025,0.2745413011485292,-0.31515879010131637,-0.04672248486523373,0.30883491480399367]
    2.4764583366071977
    prediction    label
    1.749456972317874    0.3715636
    1.8633537772490665    1.3480731
    2.6325111666721064    1.7137979
    2.3720657017536393    1.8484548
    1.011168768081166    2.0476928
    2.6730070097763634    2.5533438
    3.011702574063707    2.7180005
    2.2693119088733686    2.8063861
    2.4416666667211793    2.8419982
    3.1092859129401047    2.9626924
    3.3123201208597277    3.2752562
    2.6098535244026935    3.5876769
    Test RMSE = 0.5736895056295152
  • 相关阅读:
    jquery 停止animate动画,并且回复最初状态
    php mysql实体字符
    ECSHOP MYSQL 公用类库中的autoExecute方法
    ecshop 订单编号 get_order_sn
    ecshop 调用收货地址
    init.php 建立自己的前端共享文件
    php 生成随机字符串 abcdeft....789
    ecshop 订单-》订单状态 2
    ecshop后台,listtable.js使用
    ecshop Admin后台商品列表处(上架、下架、精品...取消精品)增加操作
  • 原文地址:https://www.cnblogs.com/cac2020/p/10882561.html
Copyright © 2020-2023  润新知