• POJ 2823:Sliding Window 单调队列


    Sliding Window
    Time Limit: 12000MS   Memory Limit: 65536K
    Total Submissions: 48930   Accepted: 14130
    Case Time Limit: 5000MS

    Description

    An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
    The array is [1 3 -1 -3 5 3 6 7], and k is 3.
    Window position Minimum value Maximum value
    [1  3  -1] -3  5  3  6  7  -1 3
     1 [3  -1  -3] 5  3  6  7  -3 3
     1  3 [-1  -3  5] 3  6  7  -3 5
     1  3  -1 [-3  5  3] 6  7  -3 5
     1  3  -1  -3 [5  3  6] 7  3 6
     1  3  -1  -3  5 [3  6  7] 3 7

    Your task is to determine the maximum and minimum values in the sliding window at each position. 

    Input

    The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

    Output

    There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

    Sample Input

    8 3
    1 3 -1 -3 5 3 6 7
    

    Sample Output

    -1 -3 -3 -3 3 3
    3 3 5 5 6 7

    题意很好理解,就是对一个长度为n的数组,有一个大小为k的窗口不断向右移动,找出这个窗口中的最小值和最大值。

    单调队列,如果是求最小值的话:满足两个条件,一个是队列中的元素从左至右 是从小到大的关系,保证从队头中提取出来的元素是最小值。求最大值则相反。

    然后是队列的位置关系,要保证每一时刻队头的位置是最先淘汰的,其实这个不用去刻意保证,只要是从左扫到右,最先进来的元素肯定是最新鲜的元素,即后面位置的元素,只需满足head<=tail,就可以满足当p[head]在窗口外面时,只需head++的条件了。

    代码:

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    #include <string>
    #include <cstring>
    #pragma warning(disable:4996)
    using namespace std;
    
    #define maxn 1000005
    int A[maxn];//存储数据
    int Q[maxn];//队列
    int P[maxn];//存储A[i]中的下标i
    int Min[maxn];//输出最小
    int Max[maxn];//输出最大
    int n,k,num;
    
    void get_min()
    {
    	int i;
    	int head=1,tail=0;
    	num=0;
    	for(i=0;i<k-1;i++)
    	{
    		while(head<=tail && Q[tail]>=A[i])
    		{
    			tail--;
    		}
    		Q[++tail]=A[i];
    		P[tail]=i;
    		//while(head<i-k+1&&head<=tail)
    		//	head++;
    	}
    	for(;i<n;i++)
    	{
    		while(head<=tail &&Q[tail]>=A[i])
    		{
    			tail--;
    		}
    		Q[++tail]=A[i];
    		P[tail]=i;
    		while(P[head]<i-k+1&&head<=tail)
    			head++;
    		Min[num++]=Q[head];
    	}
    }
    
    void get_max()
    {
    	int i;
    	int head=1,tail=0;
    	num=0;
    	for(i=0;i<k-1;i++)
    	{
    		while(head<=tail && Q[tail]<= A[i])
    		{
    			tail--;
    		}
    		Q[++tail]=A[i];
    		P[tail]=i;
    		//while(head<i-k+1&&head<=tail)
    		//	head++;
    	}
    	for(;i<n;i++)
    	{
    		while(head<=tail &&Q[tail] <= A[i])
    		{
    			tail--;
    		}
    		Q[++tail]=A[i];
    		P[tail]=i;
    		while(P[head]<i-k+1&&head<=tail)
    			head++;
    		Max[num++]=Q[head];
    	}
    }
    
    int main()
    {	
    	//freopen("i.txt","r",stdin);
    	//freopen("o.txt","w",stdout);
    
    	int i;
    	scanf("%d%d",&n,&k);
    
    	for(i=0;i<n;i++)
    	{
    		scanf("%d",A+i);
    	}
    	get_min();
    	for(i=0;i<num;i++)
    	{
    		if(i==0)
    		{
    			printf("%d",Min[i]);
    		}
    		else
    		{
    			printf(" %d",Min[i]);
    		}
    	}
    	printf("
    ");
    
    	get_max();
    	for(i=0;i<num;i++)
    	{
    		if(i==0)
    		{
    			printf("%d",Max[i]);
    		}
    		else
    		{
    			printf(" %d",Max[i]);
    		}
    	}
    	printf("
    ");
    	//system("pause");
    	return 0;
    }
    


    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    区别TPS QPS HPS RPS PV UV
    C/C++常用库及工具
    CentOS常用命令备忘
    PHP的学习--Traits新特性
    CentOS7创建本地YUM源的三种方法
    CentOS下iptables详解
    Linux备份压缩命令
    Nginx HTTPS功能部署实践
    Fuel 30 分钟快速安装OpenStack
    hadoop学习通过虚拟机安装hadoop完全分布式集群
  • 原文地址:https://www.cnblogs.com/lightspeedsmallson/p/4899532.html
Copyright © 2020-2023  润新知