• array of python


    引子

    在python中,存储序列数据(数组), 可以在list中存储。

    但是list中元素可以支持不同类型的元素。这带来了数据存储的不规则性,但是现实中往往数组元素都是一致的。list处理上效率就会降低。

    LIST

    https://www.tutorialspoint.com/python/python_lists.htm

    list1 = ['physics', 'chemistry', 1997, 2000];
    list2 = [1, 2, 3, 4, 5 ];
    list3 = ["a", "b", "c", "d"]

    array.array

    https://docs.python.org/3.5/library/array.html#module-array

    array('l')
    array('u', 'hello u2641')
    array('l', [1, 2, 3, 4, 5])
    array('d', [1.0, 2.0, 3.14])

    Arrays are sequence types and behave very much like lists, except that the type of objects stored in them is constrained. The type is specified at object creation time by using a type code, which is a single character. The following type codes are defined:

    Type codeC TypePython TypeMinimum size in bytesNotes
    'b' signed char int 1  
    'B' unsigned char int 1  
    'u' Py_UNICODE Unicode character 2 (1)
    'h' signed short int 2  
    'H' unsigned short int 2  
    'i' signed int int 2  
    'I' unsigned int int 2  
    'l' signed long int 4  
    'L' unsigned long int 4  
    'q' signed long long int 8 (2)
    'Q' unsigned long long int 8 (2)
    'f' float float 4  
    'd' double float 8  

    numpy.arrary

    https://www.numpy.org.cn/user/quickstart.html#%E5%9F%BA%E7%A1%80%E7%9F%A5%E8%AF%86

    >>> import numpy as np
    >>> a = np.arange(15).reshape(3, 5)
    >>> a
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14]])
    >>> a.shape
    (3, 5)
    >>> a.ndim
    2
    >>> a.dtype.name
    'int64'
    >>> a.itemsize
    8
    >>> a.size
    15
    >>> type(a)
    <type 'numpy.ndarray'>
    >>> b = np.array([6, 7, 8])
    >>> b
    array([6, 7, 8])
    >>> type(b)
    <type 'numpy.ndarray'>

    https://www.numpy.org.cn/user/basics/types.html#%E6%95%B0%E7%BB%84%E7%B1%BB%E5%9E%8B%E4%B9%8B%E9%97%B4%E7%9A%84%E8%BD%AC%E6%8D%A2

    支持的原始类型与 C 中的原始类型紧密相关:

    Numpy 的类型C 的类型描述
    np.bool bool 存储为字节的布尔值(True或False)
    np.byte signed char 平台定义
    np.ubyte unsigned char 平台定义
    np.short short 平台定义
    np.ushort unsigned short 平台定义
    np.intc int 平台定义
    np.uintc unsigned int 平台定义
    np.int_ long 平台定义
    np.uint unsigned long 平台定义
    np.longlong long long 平台定义
    np.ulonglong unsigned long long 平台定义
    np.half / np.float16   半精度浮点数:符号位,5位指数,10位尾数
    np.single float 平台定义的单精度浮点数:通常为符号位,8位指数,23位尾数
    np.double double 平台定义的双精度浮点数:通常为符号位,11位指数,52位尾数。
    np.longdouble long double 平台定义的扩展精度浮点数
    np.csingle float complex 复数,由两个单精度浮点数(实部和虚部)表示
    np.cdouble double complex 复数,由两个双精度浮点数(实部和虚部)表示。
    np.clongdouble long double complex 复数,由两个扩展精度浮点数(实部和虚部)表示。
  • 相关阅读:
    HttpModule学习总结实例应用读书笔记
    SEO入门教程之入门相关
    HttpHandler学习总结实例应用读书笔记
    服务器安全设置总结(Win2003)
    网站建设合同书
    HTML标签解释大全
    敏捷之痒
    一个google浏览器很意思的东东
    C#访问非托管DLL
    随着DzNT的开源,我将投入到.NET的开发当中
  • 原文地址:https://www.cnblogs.com/lightsong/p/13897277.html
Copyright © 2020-2023  润新知