• fashion MNIST识别(Tensorflow + Keras + NN)


    Fashion MNIST

    https://www.kaggle.com/zalando-research/fashionmnist

    Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes. Zalando intends Fashion-MNIST to serve as a direct drop-in replacement for the original MNIST dataset for benchmarking machine learning algorithms. It shares the same image size and structure of training and testing splits.

    The original MNIST dataset contains a lot of handwritten digits. Members of the AI/ML/Data Science community love this dataset and use it as a benchmark to validate their algorithms. In fact, MNIST is often the first dataset researchers try. "If it doesn't work on MNIST, it won't work at all", they said. "Well, if it does work on MNIST, it may still fail on others."

    Zalando seeks to replace the original MNIST dataset

    Code

    https://github.com/fanqingsong/code-snippet/blob/master/machine_learning/FMNIST/code.py

    # TensorFlow and tf.keras
    import tensorflow as tf
    from tensorflow import keras
    
    # Helper libraries
    import numpy as np
    
    print(tf.__version__)
    
    
    fashion_mnist = keras.datasets.fashion_mnist
    
    (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
    
    
    class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
                   'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    
    
    train_images = train_images / 255.0
    
    test_images = test_images / 255.0
    
    model = keras.Sequential([
        keras.layers.Flatten(input_shape=(28, 28)),
        keras.layers.Dense(128, activation=tf.nn.relu),
        keras.layers.Dense(10, activation=tf.nn.softmax)
    ])
    
    
    model.compile(optimizer=tf.train.AdamOptimizer(),
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    
    
    model.fit(train_images, train_labels, epochs=5)
    
    
    test_loss, test_acc = model.evaluate(test_images, test_labels)
    
    print('Test accuracy:', test_acc)
    
    
    predictions = model.predict(test_images)
    
    
    print(test_labels[0])
    
    print(np.argmax(predictions[0]))

    run

    root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#
    root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST# python code.py
    1.14.0
    WARNING: Logging before flag parsing goes to stderr.
    W0816 23:26:49.741352 140630311962432 deprecation.py:506] From /usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/init_ops.py:1251: calling __init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
    Instructions for updating:
    Call initializer instance with the dtype argument instead of passing it to the constructor
    W0816 23:26:49.977197 140630311962432 deprecation_wrapper.py:119] From code.py:33: The name tf.train.AdamOptimizer is deprecated. Please use tf.compat.v1.train.AdamOptimizer instead.

    2019-08-16 23:26:50.289949: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
    2019-08-16 23:26:50.684455: I tensorflow/core/platform/profile_utils/cpu_utils.cc:94] CPU Frequency: 1992000000 Hz
    2019-08-16 23:26:50.686887: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x7fffe64d99e0 executing computations on platform Host. Devices:
    2019-08-16 23:26:50.686967: I tensorflow/compiler/xla/service/service.cc:175]   StreamExecutor device (0): <undefined>, <undefined>
    2019-08-16 23:26:50.958569: W tensorflow/compiler/jit/mark_for_compilation_pass.cc:1412] (One-time warning): Not using XLA:CPU for cluster because envvar TF_XLA_FLAGS=--tf_xla_cpu_global_jit was not set.  If you want XLA:CPU, either set that envvar, or use experimental_jit_scope to enable XLA:CPU.  To confirm that XLA is active, pass --vmodule=xla_compilation_cache=1 (as a proper command-line flag, not via TF_XLA_FLAGS) or set the envvar XLA_FLAGS=--xla_hlo_profile.
    Epoch 1/5
    60000/60000 [==============================] - 3s 50us/sample - loss: 0.4992 - acc: 0.8240
    Epoch 2/5
    60000/60000 [==============================] - 2s 40us/sample - loss: 0.3758 - acc: 0.8650
    Epoch 3/5
    60000/60000 [==============================] - 3s 42us/sample - loss: 0.3382 - acc: 0.8770
    Epoch 4/5
    60000/60000 [==============================] - 2s 41us/sample - loss: 0.3135 - acc: 0.8854
    Epoch 5/5
    60000/60000 [==============================] - 3s 42us/sample - loss: 0.2953 - acc: 0.8922
    10000/10000 [==============================] - 0s 25us/sample - loss: 0.3533 - acc: 0.8715
    ('Test accuracy:', 0.8715)
    9
    9
    root@DESKTOP-OGSLB14:~/mine/code-snippet/machine_learning/FMNIST#

    Reference

    https://github.com/MachineIntellect/DeepLearner/blob/master/basic_classification.ipynb

    https://tensorflow.google.cn/beta/guide/data

  • 相关阅读:
    2017 多校联合训练 8 题解
    2017 多校联合训练 7 题解
    2017 多校联合训练 6 题解
    2017 多校联合训练 5 题解
    2017 多校联合训练 4 题解
    windows 安装python
    pygame 使用
    python 发布
    面向对象的思维方法
    python 基础
  • 原文地址:https://www.cnblogs.com/lightsong/p/11366934.html
Copyright © 2020-2023  润新知