• 2017 多校联合训练 7 题解


    Problem 1002

    因为是完全K叉树

    所以这棵树的所有孩子最多只有一个不是满K叉树

    对这个孩子进行递归处理即可
    注意K=1时要特判

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int inf=(1<<30)-1;
     4 const int maxn=100010;
     5 #define REP(i,n) for(int i=(0);i<(n);i++)
     6 #define FOR(i,j,n) for(int i=(j);i<=(n);i++)
     7 typedef long long ll;
     8 typedef pair<int,int> PII;
     9 int IN(){
    10     int c,f,x;
    11     while (!isdigit(c=getchar())&&c!='-');c=='-'?(f=1,x=0):(f=0,x=c-'0');
    12     while (isdigit(c=getchar())) x=(x<<1)+(x<<3)+c-'0';return !f?x:-x;
    13 }
    14 #define de(x) cout << #x << "=" << x << endl
    15 #define MP make_pair
    16 #define PB push_back
    17 #define fi first
    18 #define se second
    19 ll n,k;
    20 ll sum[100],t[100];
    21 
    22 int main()
    23 {
    24     int T;scanf("%d",&T);
    25     while(T--)
    26     {
    27         scanf("%lld%lld",&n,&k);
    28         if(k==1) {
    29             if(n%4==0) printf("%lld
    ",n);
    30             else if(n%4==1) printf("1
    ");
    31             else if(n%4==2) printf("%lld
    ",n+1);
    32             else if(n%4==3) puts("0");
    33             continue;
    34         }
    35         if(k==2) {
    36             
    37         }
    38         ll m=1,res=0;
    39         int tt=0;
    40         for(tt=0;res<n;tt++)
    41         {
    42             sum[tt]=m;res+=m;
    43             if(m*k+res<=n) m=m*k;
    44             else m=n-res;
    45             if(!tt) t[tt]=1;
    46             else t[tt]=t[tt-1]*k+1;
    47         }
    48         ll ans=0;
    49         if(sum[tt-1]&1) ans=1;
    50         --tt;
    51         ll M;
    52         ll s1=k+1,s2=1,s3=0;
    53         if(sum[tt]%k!=0) {
    54             M=sum[tt]/k+1;
    55             s3=sum[tt]%k+1;
    56         }
    57         else {
    58             M=sum[tt]/k;
    59             s3=k+1;
    60         }
    61         int len=2;
    62         for(int i=tt-1;i>=0;i--)
    63         {
    64             if(M>=2&&((M-1)&1)) ans^=s1;
    65             ans^=s3;
    66             if((sum[i]-M)&1) ans^=s2;
    67             ll j;
    68             if(M%k==0) j=k;else j=M%k;
    69             s3=s1*(j-1)+s3+(k-j)*s2+1;
    70             if(M%k==0) M=M/k;
    71             else M=M/k+1;
    72             s1=t[len];
    73             s2=t[len-1];
    74             len++; 
    75         }
    76         printf("%lld
    ",ans);
    77     }
    78     return 0;
    79 }
    View Code

    Problem 1005

    答案就是(n+1)/2+1

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 const int inf=(1<<30)-1;
     4 const int maxn=100010;
     5 #define REP(i,n) for(int i=(0);i<(n);i++)
     6 #define FOR(i,j,n) for(int i=(j);i<=(n);i++)
     7 typedef long long ll;
     8 typedef pair<int,int> PII;
     9 int IN(){
    10     int c,f,x;
    11     while (!isdigit(c=getchar())&&c!='-');c=='-'?(f=1,x=0):(f=0,x=c-'0');
    12     while (isdigit(c=getchar())) x=(x<<1)+(x<<3)+c-'0';return !f?x:-x;
    13 }
    14 #define de(x) cout << #x << "=" << x << endl
    15 #define MP make_pair
    16 #define PB push_back
    17 #define fi first
    18 #define se second
    19 int a,b,T;
    20 int vis[maxn];
    21 int main()
    22 {
    23     scanf("%d",&T);
    24     while(T--)
    25     {
    26         scanf("%d",&a);
    27         printf("%d
    ",(a+1)/2+1);
    28     } 
    29     return 0;
    30 }
    View Code

    problem 1006

    考虑分组背包

    首先把数分组

    2, 4, 6, 8, 10, 12, 14, 16, ...

    3, 6, 9, 12, 15, 18, 21, 24...

    5, 10, 15, 20, 25, 30...

    7, 14, 21, 28, 35, 42...

    11, 22, 33, 44, 55, 66...

    13, 26, 39, 52, 65, 78...

    17, 34, 51, 68, 85, 102...

    19, 38, 57, 76, 95, 114...

    23, 46, 69, 92...

    29, 58, 87, 116..

    31, 62, 93, 124...

    ...

    ...

    这么分组之后我们发现,有某些数被分到了多组

    比如12,因为12既可以被2整除也可以被3整除

    仔细找规律我们发现从23开始的每个组的每个数都只属于一组。

    而前8组可能会有重复的数的出现。

    这样的话,我们把前面8组先预处理一下,

    设f[mask][i]为mask状态下选了i个数的方案数。

    然后再进行分组背包。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define rep(i, a, b)	for (int i(a); i <= (b); ++i)
    #define dec(i, a, b)	for (int i(a); i >= (b); --i)
    
    typedef long long LL;
    
    const int N = 510;
    const LL mod = 1e9 + 7;
    
    LL f[305][N];
    int b1[N], b2[N], prime[N], state[N];
    int cnt = 0;
    int n, K;
    int T;
    LL  ans;
    
    void init(){
    	rep(i, 2, 503){
    		bool fl = true;
    		rep(j, 2, (int)sqrt(i + 0.5)) if (i % j == 0){
    			fl = false;
    			break;
    		}
    
    		if (fl) prime[cnt++] = i;
    
    	}
    
    	for (int i = 2; i * i <= 500; ++i)
    		for (int j = i * i; j <= 500; j += i * i) b1[j] = 1;
    
    	rep(i, 8, cnt - 1)
    		for (int j = 1; j * prime[i] <= 500; ++j) b2[j * prime[i]] = 1;
    
    	rep(i, 2, 500){
    		if (b1[i]) continue;
    		rep(j, 0, 7) if (i % prime[j] == 0) state[i] |= (1 << j);
    	}
    }
    
    int main(){
    
    	init();
    	scanf("%d", &T);
    	while (T--){
    		scanf("%d%d", &n, &K);
    		memset(f, 0, sizeof f);
    		f[0][0] = 1;
    		rep(i, 1, n){
    			if (b1[i] || b2[i]) continue;
    			dec(j, 255, 0) if (!(state[i] & j))
    				dec(k, K - 1, 0) (f[state[i] | j][k + 1] += f[j][k]) %= mod;
    		}
    
    		rep(i, 8, cnt - 1){
    			dec(k, K - 1, 0){
    				dec(j, 255, 0){
    					if (!f[j][k]) continue;
    					for (int times = 1, num; (num = times * prime[i]) <= n; ++times){
    						if (b1[num]) continue;
    						if (j & state[num]) continue;
    						(f[state[num] | j][k + 1] += f[j][k]) %= mod;
    					}
    				}
    			}
    		}
    
    		ans = 0;
    		rep(k, 1, K) rep(i, 0, 255) (ans += f[i][k]) %= mod;
    		printf("%lld
    ", ans);
    	}
    
    	return 0;
    }
    

    Problem 1008

    考虑直线近似经过每一个点

    每个点同时考虑2种情况

    即不到一点和超过一点

    极角排序后扫一圈

    二分判断下另一边过哪里

    维护前缀和后进行计算即可

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cmath>
      4 #include<cstdlib>
      5 #include<algorithm>
      6 #include<cstring>
      7 #include<string>
      8 #include<vector>
      9 #include<map>
     10 #include<set>
     11 #include<queue>
     12 using namespace std;
     13 typedef long long ll;
     14 struct point
     15 {
     16     ll x,y,val;
     17     point(){}
     18     point(ll _x,ll _y):x(_x),y(_y)
     19     {}
     20     point operator -(const point &b) const
     21     {
     22         return point(x-b.x,y-b.y);
     23     }
     24     ll operator *(const point &b) const
     25     {
     26         return x*b.x+y*b.y;
     27     }
     28     ll operator ^(const point &b) const
     29     {
     30         return x*b.y-y*b.x;
     31     }
     32 };
     33 ll _,n;
     34 point p[50010];
     35 ll sum[50010],pre[50010];
     36 ll cross(point sp,point ep,point op)
     37 {
     38     return (sp.x-op.x)*(ep.y-op.y)-(sp.y-op.y)*(ep.x-op.x);
     39 }
     40 inline bool cmp(const point &p1,const point &p2)
     41 {
     42     point o;
     43     o.x=o.y=0;
     44        return cross(p1,p2,o)>0;    
     45 }
     46 ll calc(ll pos,ll l,ll r)
     47 {
     48     if (l>r) return 0;
     49     l=l+pos;
     50     r=r+pos;
     51     if (l>n) l-=n;
     52     if (r>n) r-=n;
     53     if (l<=0) l+=n;
     54     if (r<=0) r+=n;
     55     if (l>r)
     56         return (pre[n]-pre[l-1]+pre[r]);
     57     else return pre[r]-pre[l-1];
     58 }
     59 int main()
     60 {
     61     scanf("%lld",&_);
     62     while (_--)
     63     {
     64         scanf("%lld",&n);
     65         ll i;
     66         for (i=1;i<=n;i++)
     67             scanf("%lld%lld%lld",&p[i].x,&p[i].y,&p[i].val);
     68         point o;
     69         o.x=0;
     70         o.y=0;
     71         sort(p+1,p+n+1,cmp);
     72         memset(pre,0,sizeof(pre));
     73         for (i=1;i<=n;i++)
     74             pre[i]=pre[i-1]+p[i].val;
     75         ll ans=0;
     76         //cout<<p[1].x<<" "<<p[1].y<<endl;
     77         //cout<<p[2].x<<" "<<p[2].y<<endl;
     78         for (i=1;i<=n;i++)
     79         {
     80             ll l=1,r=n-1;
     81             while (l<=r)
     82             {
     83                 ll mid=(l+r)>>1;
     84                 ll pos=i+mid;
     85                 pos%=n;
     86                 //cout<<i<<" "<<mid<<" "<<pos<<endl;
     87                 ll x=cross(p[i],p[pos],o);
     88                 if (x<0) r=mid-1;
     89                     else l=mid+1;            
     90             }
     91             ll up=calc(i,1,r);
     92             ll down=calc(i,r+1,n-1);
     93             ll sum=up*down;
     94             //cout<<i<<" "<<r<<" "<<up<<" "<<down<<endl;
     95             ans=max(ans,sum+p[i].val*up);
     96             ans=max(ans,sum+p[i].val*down);
     97         }
     98         printf("%lld
    ",ans);
     99     }
    100     return 0;
    101 }
    View Code

    Problem 1011

    直接在数列的后面加数即可

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<cstdlib>
     5 #include<algorithm>
     6 #include<cstring>
     7 #include<string>
     8 #include<vector>
     9 #include<map>
    10 #include<set>
    11 #include<queue>
    12 using namespace std;
    13 int p[10000010];
    14 void init()
    15 {
    16     p[1]=1;
    17     p[2]=2;
    18     int j=2,i=2,x=2;
    19     while (i<=10000000)
    20     {
    21         for (int k=1;k<=p[j];k++)
    22             p[i++]=x;
    23         j++;
    24         if (x==1) x=2; else x=1;
    25     }
    26 }
    27 int main()
    28 {
    29     init();
    30     int _;
    31     scanf("%d",&_);
    32     while (_--)
    33     {
    34         int x;
    35         scanf("%d",&x);
    36         printf("%d
    ",p[x]);
    37     }
    38     return 0;
    39 }
    View Code
  • 相关阅读:
    Pixar 故事公式
    你想住在中国哪里
    tar.gz方式安装nacos设置使用systemct进行service方式的管理并设置开机自启动
    记一个nginx server_name配置多个时的坑
    linux软链接的创建、修改和删除
    阿里云SLB的健康检查配置
    (转载)bullet安装之——windows下的安装与VS开发
    [译] 找到ndarray中的重复行
    [译] 对dataframe数据按照某列值进行分组,分组后连接字符串
    [译] 如何将列表嵌套列表的情况转化成一维列表
  • 原文地址:https://www.cnblogs.com/cxhscst2/p/7441955.html
Copyright © 2020-2023  润新知