• Celery


     Celery

    http://docs.celeryproject.org/en/latest/index.html

    Celery - Distributed Task Queue

    Celery is a simple, flexible, and reliable distributed system to process vast amounts of messages, while providing operations with the tools required to maintain such a system.

    It’s a task queue with focus on real-time processing, while also supporting task scheduling.

    Celery has a large and diverse community of users and contributors, you should come join us on IRC or our mailing-list.

    Celery is Open Source and licensed under the BSD License.

    DEMO安装运行:

    https://github.com/fanqingsong/celery_running

    #install dependency
    pipenv install
    
    #run tasks proccess
    pipenv run celery -A tasks worker --loglevel=info -P eventlet
    
    # run producer
    pipenv run python taskscaller.py

    任务客户端:

     任务发送端:、

    报错处理

    https://blog.csdn.net/qq_30242609/article/details/79047660

    运行tasks有报错 “Celery ValueError: not enough values to unpack (expected 3, got 0)”

    启动worker的时候加一个参数,如下:

    celery -A <mymodule> worker -l info -P eventlet

    任务处理状态

    官网解释:

    http://docs.celeryproject.org/en/latest/faq.html#how-do-i-get-the-result-of-a-task-if-i-have-the-id-that-points-there

    How do I get the result of a task if I have the ID that points there?

    Answer: Use task.AsyncResult:

    >>> result = my_task.AsyncResult(task_id)
    >>> result.get()
    

    This will give you a AsyncResult instance using the tasks current result backend.

    If you need to specify a custom result backend, or you want to use the current application’s default backend you can use app.AsyncResult:

    >>> result = app.AsyncResult(task_id)
    >>> result.get()
    

    StackOverflow

    https://stackoverflow.com/questions/9034091/how-to-check-task-status-in-celery

     

    Return the task_id (which is given from .delay()) and ask the celery instance afterwards about the state:

    x = method.delay(1,2)
    print x.task_id
    

    When asking, get a new AsyncResult using this task_id:

    from celery.result import AsyncResult
    res = AsyncResult("your-task-id")
    res.ready()
    

    API

    http://docs.celeryproject.org/en/latest/reference/celery.result.html

    通过collect接口获取, 底层机制是python coroutine

    from celery import group
    from proj.celery import app
    
    @app.task(trail=True)
    def A(how_many):
        return group(B.s(i) for i in range(how_many))()
    
    @app.task(trail=True)
    def B(i):
        return pow2.delay(i)
    
    @app.task(trail=True)
    def pow2(i):
        return i ** 2
    
    >>> from celery.result import ResultBase
    >>> from proj.tasks import A
    
    >>> result = A.delay(10)
    >>> [v for v in result.collect()
    ...  if not isinstance(v, (ResultBase, tuple))]
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    

    定时任务

    https://realpython.com/asynchronous-tasks-with-django-and-celery/

    from celery.task.schedules import crontab
    from celery.decorators import periodic_task
    from celery.utils.log import get_task_logger
    
    from photos.utils import save_latest_flickr_image
    
    logger = get_task_logger(__name__)
    
    
    @periodic_task(
        run_every=(crontab(minute='*/15')),
        name="task_save_latest_flickr_image",
        ignore_result=True
    )
    def task_save_latest_flickr_image():
        """
        Saves latest image from Flickr
        """
        save_latest_flickr_image()
        logger.info("Saved image from Flickr")

    Here, we run the save_latest_flickr_image() function every fifteen minutes by wrapping the function call in a task. The @periodic_task decorator abstracts out the code to run the Celery task, leaving the tasks.py file clean and easy to read!

     参考:

    https://www.liaoxuefeng.com/article/00137760323922531a8582c08814fb09e9930cede45e3cc000

  • 相关阅读:
    论文笔记:语音情感识别(五)语音特征集之eGeMAPS,ComParE,09IS,BoAW
    《Grammar and Punctuation》课堂笔记
    《Sequence Models》课堂笔记
    【翻译】学术写作中的数字
    生成器
    使用序列生成字典
    字典 (dictionary) 的默认值
    如何阅读文献 (How to Read a Paper)
    Python 列表的连接和联合
    《Convolutional Neural Networks》课堂笔记
  • 原文地址:https://www.cnblogs.com/lightsong/p/10714395.html
Copyright © 2020-2023  润新知