• 二叉树前序、中序、后序遍历相互求法


    今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。

    总结一下三种遍历方式的特征: 
    前序:开头是头结点 
    中序:根据头结点划分左右子树的元素 
    后序:末尾是头结点

    首先,我们看看前序、中序、后序遍历的特性:

    前序遍历:

    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树

    中序遍历:

    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树

    后序遍历:

    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

    一、已知前序、中序遍历,求后序遍历

    例:

    前序遍历: GDAFEMHZ

    中序遍历: ADEFGHMZ

    画树求法:

    第一步,根据前序遍历的特点,我们知道根结点为G

    第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

    第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

    第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

    第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

    1 确定根,确定左子树,确定右子树。

    2 在左子树中递归。

    3 在右子树中递归。

    4 打印当前根。

    那么,我们可以画出这个二叉树的形状:

    这里写图片描述

    那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

    编程求法:(依据上面的思路,写递归程序)

      #include <iostream>  
      #include <fstream>  
      #include <string>  
    
      struct TreeNode
      {
        struct TreeNode* left;
        struct TreeNode* right;
        char  elem;
     };
    
     void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
     {
       if(length == 0)
         {
           //cout<<"invalid length";
           return;
         }
       TreeNode* node = new TreeNode;//Noice that [new] should be written out.
       node->elem = *preorder;
       int rootIndex = 0;
       for(;rootIndex < length; rootIndex++)
         {
           if(inorder[rootIndex] == *preorder)
           break;
         }
       //Left
       BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
       //Right
       BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
       cout<<node->elem<<endl;
       return;
     }
    
    
     int main(int argc, char* argv[])
     {
         printf("Hello World!
    ");
         char* pr="GDAFEMHZ";
         char* in="ADEFGHMZ";
    
         BinaryTreeFromOrderings(in, pr, 8);
    
         printf("
    ");
         return 0;
     }

    输出的结果为:AEFDHZMG

    二、已知中序和后序遍历,求前序遍历

    依然是上面的题,这次我们只给出中序和后序遍历:

    中序遍历: ADEFGHMZ

    后序遍历: AEFDHZMG

    画树求法: 
    第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

    第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

    第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

    第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前后序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

    第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

    1 确定根,确定左子树,确定右子树。

    2 在左子树中递归。

    3 在右子树中递归。

    4 打印当前根。

    这样,我们就可以画出二叉树的形状,如上图所示,这里就不再赘述。

    那么,前序遍历: GDAFEMHZ

    编程求法:(并且验证我们的结果是否正确)

    #include <iostream>
    #include <fstream>
    #include <string>
    
    struct TreeNode
    {
        struct TreeNode* left;
        struct TreeNode* right;
        char  elem;
    };
    
    
    TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)
    {
        if(length == 0)
        {
            return NULL;
        }
        TreeNode* node = new TreeNode;//Noice that [new] should be written out.
        node->elem = *(aftorder+length-1);
        std::cout<<node->elem<<std::endl;
        int rootIndex = 0;
        for(;rootIndex < length; rootIndex++)//a variation of the loop
        {
            if(inorder[rootIndex] ==  *(aftorder+length-1))
                break;
        }
        node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);
        node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));
    
        return node;
    }
    
    int main(int argc, char** argv)
    {
        char* af="AEFDHZMG";    
        char* in="ADEFGHMZ"; 
        BinaryTreeFromOrderings(in, af, 8); 
        printf("
    ");
        return 0;
    }

    输出结果:GDAFEMHZ

  • 相关阅读:
    斐波那契数列 的两种实现方式(Java)
    单链表反转
    单链表合并
    两个有序list合并
    list去重 转载
    RemoveAll 要重写equals方法
    Java for LeetCode 138 Copy List with Random Pointer
    Java for LeetCode 137 Single Number II
    Java for LeetCode 136 Single Number
    Java for LeetCode 135 Candy
  • 原文地址:https://www.cnblogs.com/lightmare/p/10398862.html
Copyright © 2020-2023  润新知