#!/usr/bin/env python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import re df = pd.read_csv("HillaryEmails.csv") df = df[['Id','ExtractedBodyText']].dropna()#保留这两个信息,其他的扔掉 #文本预处理 def clean_email_text(text): text = text.replace('/n'," ")#去掉新行 text = re.sub(r'-',' ',text) text = re.sub(r"d+/d+/d+","",text) text = re.sub(r"[0-2]?[0-9]:[0-6][0-9]","",text) text = re.sub(r"[w]+@[.w]+","",text) text = re.sub(r"/[a-zA-Z]*[://]*[A-Za-z0-9-_]+.+[A-Za-z0-9]./" r"%&=?-_]+/i","",text) pure_text = '' for letter in text: if letter.isalpha() or letter==' ': #只留下字母和空格 pure_text +=letter #去除落单的单词 text = ' '.join(word for word in pure_text.split() if len(word)>1) return text #新建一个colum,把方法跑一遍 docs = df['ExtractedBodyText'] docs = docs.apply(lambda s: clean_email_text(s)) print(docs.head(1).values) doclist = docs.values #引入库 from gensim import corpora,models,similarities import gensim stoplist = ['very', 'ourselves', 'am', 'doesn', 'through', 'me', 'against', 'up', 'just', 'her', 'ours', 'couldn', 'because', 'is', 'isn', 'it', 'only', 'in', 'such', 'too', 'mustn', 'under', 'their', 'if', 'to', 'my', 'himself', 'after', 'why', 'while', 'can', 'each', 'itself', 'his', 'all', 'once', 'herself', 'more', 'our', 'they', 'hasn', 'on', 'ma', 'them', 'its', 'where', 'did', 'll', 'you', 'didn', 'nor', 'as', 'now', 'before', 'those', 'yours', 'from', 'who', 'was', 'm', 'been', 'will', 'into', 'same', 'how', 'some', 'of', 'out', 'with', 's', 'being', 't', 'mightn', 'she', 'again', 'be', 'by', 'shan', 'have', 'yourselves', 'needn', 'and', 'are', 'o', 'these', 'further', 'most', 'yourself', 'having', 'aren', 'here', 'he', 'were', 'but', 'this', 'myself', 'own', 'we', 'so', 'i', 'does', 'both', 'when', 'between', 'd', 'had', 'the', 'y', 'has', 'down', 'off', 'than', 'haven', 'whom', 'wouldn', 'should', 've', 'over', 'themselves', 'few', 'then', 'hadn', 'what', 'until', 'won', 'no', 'about', 'any', 'that', 'for', 'shouldn', 'don', 'do', 'there', 'doing', 'an', 'or', 'ain', 'hers', 'wasn', 'weren', 'above', 'a', 'at', 'your', 'theirs', 'below', 'other', 'not', 're', 'him', 'during', 'which'] texts = [[word for word in doc.lower().split() if word not in stoplist] for doc in doclist] print(texts[0]) #建立语料库 dictionary = corpora.Dictionary(texts) corpus = [dictionary.doc2bow(text) for text in texts] print(corpus[13]) #建立模型 lda = gensim.models.ldamodel.LdaModel(corpus=corpus,id2word=dictionary,num_topics=20) print(lda.print_topic(10,topn=5)) print(lda.print_topics(num_topics = 10,num_words = 5)) lda_list = [] #doc1这句话属于哪个主题? doc1 = 'To all the little girls watching never doubt that you are valuable and powerful & deserving of every chance & opportunity in the world' for words in doc1: doc_bow = dictionary.doc2bow(words) doc_lda = lda[doc_bow] lda_list.append(doc_lda) print(lda_list)