• 洛谷 P2257


    题目链接:P2257 YY的GCD

    题目大意

    (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}[gcd(i, j) == d]) , 其中 (d) 为质数

    solution

    我们设 (f(n)) 为满足 (gcd(x, y) == d)((x, y)) 的对数

    (F(d)) 为满足 (d | gcd(x, y)) 的对数

    那么 (F(x) = frac{n}{x} * frac{m}{x}), 反演后得到:

    (f(x) = sumlimits_{x | d}mu(frac{d}{x})F(d) = sumlimits_{x | d}mu(frac{d}{x})frac{n}{d} * frac{m}{d})

    因为题目要求 (gcd(x, y)) 为质数, 那么,我们枚举会得到:

    (ans = sumlimits_{p}^{min(n, m)}sumlimits_{d}^{min(n, m)}mu(d)frac{n}{pd} * frac{m}{pd})

    我们这么做肯定 T

    那我们继续做

    我们设 (T = pd), 那么继续得到 (ans = sumlimits_{T = 1}^{min(n, m)}frac{n}{T} * frac{m}{T} sumlimits_{p|T}mu(frac{T}{p}))

    我们预处理处所有的 (sumlimits_{p | T}mu(frac{T}{p})), 这道题就解决了

    Code:

    /**
    *    Author: Alieme
    *    Data: 2020.9.8
    *    Problem: P2257
    *    Time: O()
    */
    #include <cstdio>
    #include <iostream>
    #include <string>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    
    #define int long long
    #define rr register
    
    #define inf 1e9
    #define MAXN 10000001
    
    using namespace std;
    
    inline void read(int &T) {
    	T = 0;
    	int f = 0;
    	char ch = getchar();
    	while (!isdigit(ch)) f |= ch == '-', ch = getchar();
    	while (isdigit(ch)) T = T * 10 + (ch ^ 48), ch = getchar();
    	if (f) T = -T; 
    }
    
    void print(int x) {
    	if (x < 0) putchar('-'), x = -x;
    	if (x > 9) print(x / 10);
    	putchar(x % 10 + '0');
    }
    
    int tot, n, m, T, ans;
    
    int u[MAXN], prime[MAXN], g[MAXN], sum[MAXN];
    
    bool vis[MAXN];
    
    inline void init() {
    	u[1] = 1;
    	for (rr int i = 2; i < MAXN; i++) {
    		if (!vis[i]) prime[++tot] = i, u[i] = -1, g[i] = 1;
    		sum[i] = sum[i - 1] + g[i];
    		for (rr int j = 1; j <= tot && i * prime[j] < MAXN; j++) {
    			vis[i * prime[j]] = 1;
    			if (i % prime[j]) {
    				u[i * prime[j]] = -u[i];
    				g[i * prime[j]] = u[i] - g[i];
    			}
    			else {
    				u[i * prime[j]] = 0;
    				g[i * prime[j]] = u[i];
    				break;
    			}
    		}
    	}
    }
    
    signed main() {
    	init();
    	read(T);
    	while (T--) {
    		read(n), read(m);
    		ans = 0;
    		if (n < m) swap(n, m);
    		for (rr int l = 1, r; l <= m; l = r + 1) {
    			r = min(n / (n / l), m / (m / l));
    			ans += (n / l) * (m / l) * (sum[r] - sum[l - 1]);
    		}
    		print(ans);
    		puts("");
    	}
    }
    
  • 相关阅读:
    对成本的理解
    Oracle ERP中帐户类型和会计科目分类的关系---待完善
    固定资产调整对资产折旧的影响
    20201111 eset internet security keys | NOD 32 keys | ESET MOBILE LICENSE KEYS
    一些常用到的windows ISO download 文件下载资源
    读《改变心理学的40项研究》有感,之一
    有归从,可与有。2019.07.09.
    灼钓鱼炭 2019.07.08.
    人居一世间, 忽若风吹尘 2019.07.07.
    exported wechat's voice! 成功导出微信语音! 2019.07.06.
  • 原文地址:https://www.cnblogs.com/lieberdq/p/13632441.html
Copyright © 2020-2023  润新知