• 洛谷 P3455


    题目链接:P3455 [POI2007]ZAP-Queries

    题目大意

    (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}gcd(i, j) = d)

    solution

    又是莫比乌斯反演的板子题, 现在让我们来推一下具体的过程

    (f(k) = sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}[gcd(i,j) == k])

    (Rightarrow f(k) = sumlimits_{i = 1}^{leftlfloorfrac{n}{k} ight floor}sumlimits_{j = 1}^{leftlfloorfrac{m}{k} ight floor}[gcd(i,j) == 1])

    (Rightarrow f(k) = sumlimits_{i = 1}^{leftlfloorfrac{n}{k} ight floor}sumlimits_{j = 1}^{leftlfloorfrac{m}{k} ight floor}sumlimits_{d|gcd(i,j)}mu(d))

    (Rightarrow f(k) = sumlimits_{i = 1}^{leftlfloorfrac{n}{k} ight floor}sumlimits_{j = 1}^{leftlfloorfrac{m}{k} ight floor}sumlimits_{d|i}sumlimits_{d|j}mu(d))

    (Rightarrow f(k) = sumlimits_{d = 1}^{leftlfloorfrac{min(n, m)}{k} ight floor}mu(d)sumlimits_{i = 1}^{leftlfloorfrac{n}{k} ight floor}sumlimits_{d|i}sumlimits_{j = 1}^{leftlfloorfrac{m}{k} ight floor}sumlimits_{d|j}1)

    (Rightarrow f(k) = sumlimits_{d = 1}^{leftlfloorfrac{min(n, m)}{k} ight floor}mu(d)leftlfloorfrac{n}{kd} ight floorleftlfloorfrac{m}{kd} ight floor)

    然后我们用一下整数分块,求出每一个 (f(k) imes k) 加起来就是 (sumlimits_{i = 1}^{n}sumlimits_{j = 1}^{m}gcd(i, j))
    然后我们有线性筛筛欧拉函数就好了

    Code:

    /**
    *    Author: Alieme
    *    Data: 2020.9.7
    *    Problem: Luogu P3455
    *    Time: O()
    */
    #include <cstdio>
    #include <iostream>
    #include <string>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    
    #define int long long
    #define rr register
    
    #define inf 1e9
    #define MAXN 100010
    
    using namespace std;
    
    inline int read() {
    	int s = 0, f = 0;
    	char ch = getchar();
    	while (!isdigit(ch)) f |= ch == '-', ch = getchar();
    	while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
    	return f ? -s : s;
    }
    
    void print(int x) {
    	if (x < 0) putchar('-'), x = -x;
    	if (x > 9) print(x / 10);
    	putchar(x % 10 + 48);
    }
    
    int T, n, m, k, tot, ans;
    
    int sum[MAXN], mu[MAXN], prime[MAXN];
    
    bool vis[MAXN];
    
    inline void init() {
    	mu[1] = 1;
    	for (rr int i = 2; i <= 100000; i++) {
    		if (!vis[i]) prime[++tot] = i, mu[i] = -1;
    		for (rr int j = 1; j <= tot; j++) {
    			if (i * prime[j] > 100000) break;
    			mu[i * prime[j]] = -mu[i];
    			vis[i * prime[j]] = 1;
    			if (i % prime[j] == 0) {
    				mu[i * prime[j]] = 0;
    				break;
    			}
    		}
    	}
    
    	for (rr int i = 1; i <= 100000; i++) sum[i] = sum[i - 1] + mu[i];
    }
    
    signed main() {
    	init();
    	T = read();
    	while (T--) {
    		n = read();
    		m = read();
    		k = read();
    		n /= k,	m /= k;
    		ans = 0;	
    		for (rr int l = 1, r; l <= min(n, m); l = r + 1) {
    			r = min(n / (n / l), m / (m / l));
    			ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
    		}
    		print(ans);
    		puts("");
    	}
    }
    
  • 相关阅读:
    由于挂载的nfs存储目录掉下线,导致创建VM时,无法创建
    使用RVM更新Ruby 版本
    安装logstash+kibana+elasticsearch+redis搭建集中式日志分析平台
    Topic modeling【经典模型】
    [第1集] 课程目标,数据类型,运算,变量
    Juint test Case 的2种使用方式
    getJSON方式请求服务器
    Web项目改名的带来的404not found问题
    JavaWeb EL表达式, JSTL标签及过滤器综合学习
    HashMap的几种遍历方式(转载)
  • 原文地址:https://www.cnblogs.com/lieberdq/p/13629302.html
Copyright © 2020-2023  润新知