• 学习笔记TF011:多层神经网络


    线性回归、对数几率回归模型,本质上是单个神经元。计算输入特征加权和。偏置视为每个样本输入特征为1权重,计算特征线性组合。激活(传递)函数 计算输出。线性回归,恒等式(值不变)。对数几率回归,sigmoid。输入->权重->求和->传递->输出。softmax分类含C个神经元,每个神经元对应一个输出类别。

    XOR异或运算,无法通过线性模型解决。sigmoido类型神经元要求数据线性可分。2D数据存在直线,高维数据存在超平面,把不同类别样本分隔。

    在神经网络输入和输出之间插入更多神经元,解决非线性可分问题。输入层->隐含层(hidden layer)->输出层->输出。隐含层使网络可以对输入数据提出更多问题。隐含层每个神经元对应一个问题,依据问题回答最终决定输出结果。隐含层在数据分布图允许神经网络绘制以一条以上分隔线。每条分隔线向输入数据划分提出问题,所有相等输出划分到单个区域。深度学习,添加更多隐含层,可采用不同类型连接,使用不同激活函数。

    梯度下降法,找到函数极值点。学习,改进模型参数,大量训练,损失最小化。梯度下降法寻找损失函数极值点。梯度输出偏导数向量,每个分量对应函数对输入向量相应分量偏导。求偏导,当前变量外所有变量视为常数,用单变量求导法则。偏导数度量函数输出相对特定输入变量的变化率,当输入变量值变化,输出值的变化。损失函数输入变量指模型权值,不是实际数据集输入特征。相对于推断模型每个权值。
    梯度输出向量表明每个位置损失函数增长最快方向,在函数每个位置向哪个方向移动函数值可增长。点表示权值当前值。梯度向右箭头表示为增加损失需向右移动,简头长度表示向右移动函数值增长量。反方向移动,损失函数值减少。直到梯度模为0,达到损失函数极小值点。
    学习速率(learning rate)缩放梯度。梯度向量长度在损失函数单元中,缩放与权值相加。学习速率是超参数(hyperparameter),模型手工可配置设置,需指定正确值。太小,需要多轮迭代。太大,超调(overshooting),永远找不到极小值点。用tf.summary.scalar函数在TensorBoard查看损失函数值变化曲线。
    局部极值点问题,通过权值随机初始化,增加靠近全局最优点附近开始下降机会。损失函数所有极值点接近等价。
    tf.gradients方法,符号计算推导指定流图步骤梯度以张量输出。梯度下降法取决输入数据形状及问题特点。

    误差反向传播算法,计算损失函数相对网络权值偏导,每层导数都是后一层导数与前一层导输出积。前馈,从输入开始,逐一计算隐含层输出,直到输出层。计算导数,从输出层逐一反向传播。复用所有已完成计算元素。

    Sigmoid隐含层,softmax输出层以及带反向传播梯度下降,是最基础构件。

    参考资料:
    《面向机器智能的TensorFlow实践》

    欢迎加我微信交流:qingxingfengzi
    我的微信公众号:qingxingfengzigz
    我老婆张幸清的微信公众号:qingqingfeifangz

  • 相关阅读:
    10-tensorflow-tf.concat()
    09-tensorflow-tf.split()
    10-numpy笔记-np.random.randint
    学习网络编程的一些实用技巧和细节
    读书笔记_Effective_C++_条款三十一:将文件间的编译依存关系降至最低(第一部分) 重新学习了 继续学习第二 三部分更加精彩
    对四次挥手中的TIME_WAIT状态的学习
    accept 和 connect API深入 重点accept阻塞和非阻塞问题学习
    几种IO情况的学习和总结 关于 =====阻塞/非阻塞以及同步/异步区别
    tcp头和ip头 图文简介和简要说明
    Nginx 为什么要延迟关闭
  • 原文地址:https://www.cnblogs.com/libinggen/p/6884588.html
Copyright © 2020-2023  润新知