代码
import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D']) # 行数,列数,赋值 df.iloc[0,1] = np.nan df.iloc[1,2] = np.nan # 以行丢掉 print('-1-') print(df.dropna(axis=0)) # 有nan就丢 这是默认情况 print('-2-') print(df.dropna(axis=0, how='any')) # 全是nan再丢 print('-3-') print(df.dropna(axis=0, how='all')) # 填上 print('-4-') print(df.fillna(value=0)) # 判断每个的结果 print('-5-') print(df.isnull()) # 整体内是不是有null print('-6-') print(np.any(df.isnull()) == True) # 读取保存数据 read_csv to_csv df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*2,columns=['a','b','c','d']) print('-7-') print(df1) print(df2) print(df3) # axis=0 竖向合并 res = pd.concat([df1,df2,df3], axis=0) print('-8-') print(res) res = pd.concat([df1,df2,df3], axis=0, ignore_index=True) print('-9-') print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d'],index=[1,2,3]) df2 = pd.DataFrame(np.ones((3,4))*1,columns=['b','c','d','e'],index=[2,3,4]) print('-10-') print(df1) print(df2) # 组合模式 res = pd.concat([df1,df2]) print('-11-') print(res) # defalut 并集 res = pd.concat([df1,df2], join='outer') print('-12-') print(res) # 交集 res = pd.concat([df1,df2], join='inner') print('-13-') print(res) res = pd.concat([df1,df2], join='inner', ignore_index=True) print('-14-') print(res) # axis=1 左右合并 只考虑df1的index res = pd.concat([df1,df2], axis=1,join_axes=[df1.index]) print('-15-') print(res) # axis=1 左右合并 res = pd.concat([df1,df2], axis=1) print('-16-') print(res) df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1,columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*2,columns=['b','c','d','e'],index=[2,3,4]) res = df1.append(df2, ignore_index=True) print('-17-') print(res) res = df1.append([df2, df3], ignore_index=True) print('-18-') print(res) s1 = pd.Series([1,2,3,4], index=['a','b','c','d']) res = df1.append(s1,ignore_index=True) print('-19-') print(res)
输出
-1- A B C D 2013-01-03 8 9.0 10.0 11 2013-01-04 12 13.0 14.0 15 2013-01-05 16 17.0 18.0 19 2013-01-06 20 21.0 22.0 23 -2- A B C D 2013-01-03 8 9.0 10.0 11 2013-01-04 12 13.0 14.0 15 2013-01-05 16 17.0 18.0 19 2013-01-06 20 21.0 22.0 23 -3- A B C D 2013-01-01 0 NaN 2.0 3 2013-01-02 4 5.0 NaN 7 2013-01-03 8 9.0 10.0 11 2013-01-04 12 13.0 14.0 15 2013-01-05 16 17.0 18.0 19 2013-01-06 20 21.0 22.0 23 -4- A B C D 2013-01-01 0 0.0 2.0 3 2013-01-02 4 5.0 0.0 7 2013-01-03 8 9.0 10.0 11 2013-01-04 12 13.0 14.0 15 2013-01-05 16 17.0 18.0 19 2013-01-06 20 21.0 22.0 23 -5- A B C D 2013-01-01 False True False False 2013-01-02 False False True False 2013-01-03 False False False False 2013-01-04 False False False False 2013-01-05 False False False False 2013-01-06 False False False False -6- True -7- a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 a b c d 0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 a b c d 0 2.0 2.0 2.0 2.0 1 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0 -8- a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 0 2.0 2.0 2.0 2.0 1 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0 -9- a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 6 2.0 2.0 2.0 2.0 7 2.0 2.0 2.0 2.0 8 2.0 2.0 2.0 2.0 -10- a b c d 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 0.0 0.0 0.0 0.0 b c d e 2 1.0 1.0 1.0 1.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 d:AlexWorkLog34-deeplearningmyWorksTransferLearningExamplemofangTransferLearning1.py:62: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2]) -11- a b c d e 1 0.0 0.0 0.0 0.0 NaN 2 0.0 0.0 0.0 0.0 NaN 3 0.0 0.0 0.0 0.0 NaN 2 NaN 1.0 1.0 1.0 1.0 3 NaN 1.0 1.0 1.0 1.0 4 NaN 1.0 1.0 1.0 1.0 d:AlexWorkLog34-deeplearningmyWorksTransferLearningExamplemofangTransferLearning1.py:66: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False res = pd.concat([df1,df2], join='outer') -12- a b c d e 1 0.0 0.0 0.0 0.0 NaN 2 0.0 0.0 0.0 0.0 NaN 3 0.0 0.0 0.0 0.0 NaN 2 NaN 1.0 1.0 1.0 1.0 3 NaN 1.0 1.0 1.0 1.0 4 NaN 1.0 1.0 1.0 1.0 -13- b c d 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 2 1.0 1.0 1.0 3 1.0 1.0 1.0 4 1.0 1.0 1.0 -14- b c d 0 0.0 0.0 0.0 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 1.0 1.0 1.0 4 1.0 1.0 1.0 5 1.0 1.0 1.0 -15- a b c d b c d e 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 -16- a b c d b c d e 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 4 NaN NaN NaN NaN 1.0 1.0 1.0 1.0 -17- a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 C:ProgramDataAnaconda3libsite-packagespandascoreframe.py:6201: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=True'. To retain the current behavior and silence the warning, pass sort=False sort=sort) -18- a b c d e 0 0.0 0.0 0.0 0.0 NaN 1 0.0 0.0 0.0 0.0 NaN 2 0.0 0.0 0.0 0.0 NaN 3 1.0 1.0 1.0 1.0 NaN 4 1.0 1.0 1.0 1.0 NaN 5 1.0 1.0 1.0 1.0 NaN 6 NaN 2.0 2.0 2.0 2.0 7 NaN 2.0 2.0 2.0 2.0 8 NaN 2.0 2.0 2.0 2.0 -19- a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 1.0 2.0 3.0 4.0