• 717. 1-bit and 2-bit Characters


    We have two special characters. The first character can be represented by one bit 0. The second character can be represented by two bits (10 or 11).

    Now given a string represented by several bits. Return whether the last character must be a one-bit character or not. The given string will always end with a zero.

    Example 1:

    Input: 
    bits = [1, 0, 0]
    Output: True
    Explanation: 
    The only way to decode it is two-bit character and one-bit character. So the last character is one-bit character.
    

    Example 2:

    Input: 
    bits = [1, 1, 1, 0]
    Output: False
    Explanation: 
    The only way to decode it is two-bit character and two-bit character. So the last character is NOT one-bit character.
    

    Note:

    • 1 <= len(bits) <= 1000.
    • bits[i] is always 0 or 1.

    解题思路:

    先判断最后一位是0还是1.

    然后看倒数第二位,如果是0那么肯定是,

    如果是1的话,那么倒数第三位必需是1,并且连续的1必需是偶数。

    1. class Solution {  
    2. public:  
    3.     bool isOneBitCharacter(vector<int>& bits) {  
    4.         if(bits.size()==0) return false;  
    5.         if(bits.size()==1) {if(bits[0]!=0) return false;else return true;}  
    6.         int n =bits.size();  
    7.         int count_1=0;  
    8.         if(bits[n-1] != 0) return false;  
    9.         else{  
    10.             if(bits[n-2]==0) return true;  
    11.             else if(bits[n-2]!=0){  
    12.                    for(int i=n-2;i>=0;i--){  
    13.                        if(bits[i]!=0) count_1++;  
    14.                        else break;  
    15.                    }  
    16.             }  
    17.         }  
    18.         if(count_1%2==0) return true;  
    19.         else return false;  
    20.           
    21.     }  
    22. };  
  • 相关阅读:
    OWASP要素增强Web应用程序安全(3) java程序员
    企业如何建立渗透式网络存取 java程序员
    无线网卡使用的十一条安全妙计 java程序员
    (扩展)欧几里德&&快速幂
    邻接表(两种实现形式)
    pojHighways(prime)
    并查集的几道题(hdu1198)(1232)(1272)(1598)
    hdu1372Knight Moves(简单BFS)
    hdu2647Reward(拓扑排序)
    hdu4339Query(多校四)
  • 原文地址:https://www.cnblogs.com/liangyc/p/8794641.html
Copyright © 2020-2023  润新知