• PCL点云分割(1)


    点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等。

    案例分析

    用一组点云数据做简单的平面的分割:

    planar_segmentation.cpp

    #include <iostream>
    #include <pcl/ModelCoefficients.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/point_types.h>
    #include <pcl/sample_consensus/method_types.h>   //随机参数估计方法头文件
    #include <pcl/sample_consensus/model_types.h>   //模型定义头文件
    #include <pcl/segmentation/sac_segmentation.h>   //基于采样一致性分割的类的头文件
    
    int
     main (int argc, char** argv)
    {
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    
      // 填充点云
      cloud->width  = 15;
      cloud->height = 1;
      cloud->points.resize (cloud->width * cloud->height);
    
      // 生成数据,采用随机数填充点云的x,y坐标,都处于z为1的平面上
      for (size_t i = 0; i < cloud->points.size (); ++i)
      {
        cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
        cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
        cloud->points[i].z = 1.0;
      }
    
      // 设置几个局外点,即重新设置几个点的z值,使其偏离z为1的平面
      cloud->points[0].z = 2.0;
      cloud->points[3].z = -2.0;
      cloud->points[6].z = 4.0;
    
      std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl;  //打印
      for (size_t i = 0; i < cloud->points.size (); ++i)
        std::cerr << "    " << cloud->points[i].x << " "
                            << cloud->points[i].y << " "
                            << cloud->points[i].z << std::endl;
      //创建分割时所需要的模型系数对象,coefficients及存储内点的点索引集合对象inliers
      pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
      pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
      // 创建分割对象
      pcl::SACSegmentation<pcl::PointXYZ> seg;
      // 可选择配置,设置模型系数需要优化
      seg.setOptimizeCoefficients (true);
      // 必要的配置,设置分割的模型类型,所用的随机参数估计方法,距离阀值,输入点云
      seg.setModelType (pcl::SACMODEL_PLANE);   //设置模型类型
      seg.setMethodType (pcl::SAC_RANSAC);      //设置随机采样一致性方法类型
      seg.setDistanceThreshold (0.01);    //设定距离阀值,距离阀值决定了点被认为是局内点是必须满足的条件
                                           //表示点到估计模型的距离最大值,
    
      seg.setInputCloud (cloud);
      //引发分割实现,存储分割结果到点几何inliers及存储平面模型的系数coefficients
      seg.segment (*inliers, *coefficients);
    
      if (inliers->indices.size () == 0)
      {
        PCL_ERROR ("Could not estimate a planar model for the given dataset.");
        return (-1);
      }
      //打印出平面模型
      std::cerr << "Model coefficients: " << coefficients->values[0] << " " 
                                          << coefficients->values[1] << " "
                                          << coefficients->values[2] << " " 
                                          << coefficients->values[3] << std::endl;
    
      std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
      for (size_t i = 0; i < inliers->indices.size (); ++i)
        std::cerr << inliers->indices[i] << "    " << cloud->points[inliers->indices[i]].x << " "
                                                   << cloud->points[inliers->indices[i]].y << " "
                                                   << cloud->points[inliers->indices[i]].z << std::endl;
    
      return (0);
    }

    结果如下:开始打印的数据为手动添加的点云数据,并非都处于z为1的平面上,通过分割对象的处理后提取所有内点,即过滤掉z不等于1的点集

    (2)实现圆柱体模型的分割:采用随机采样一致性估计从带有噪声的点云中提取一个圆柱体模型。

    新建文件cylinder_segmentation.cpp

    #include <pcl/ModelCoefficients.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/point_types.h>
    #include <pcl/filters/extract_indices.h>
    #include <pcl/filters/passthrough.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/sample_consensus/method_types.h>
    #include <pcl/sample_consensus/model_types.h>
    #include <pcl/segmentation/sac_segmentation.h>
    
    typedef pcl::PointXYZ PointT;
    
    int
    main (int argc, char** argv)
    {
      // All the objects needed
      pcl::PCDReader reader;                    //PCD文件读取对象
      pcl::PassThrough<PointT> pass;             //直通滤波对象
      pcl::NormalEstimation<PointT, pcl::Normal> ne;  //法线估计对象
      pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;    //分割对象
      pcl::PCDWriter writer;            //PCD文件读取对象
      pcl::ExtractIndices<PointT> extract;      //点提取对象
      pcl::ExtractIndices<pcl::Normal> extract_normals;    ///点提取对象
      pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());
    
      // Datasets
      pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
      pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
      pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
      pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
      pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>);
      pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients);
      pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices);
    
      // Read in the cloud data
      reader.read ("table_scene_mug_stereo_textured.pcd", *cloud);
      std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl;
    
      // 直通滤波,将Z轴不在(0,1.5)范围的点过滤掉,将剩余的点存储到cloud_filtered对象中
      pass.setInputCloud (cloud);
      pass.setFilterFieldName ("z");
      pass.setFilterLimits (0, 1.5);
      pass.filter (*cloud_filtered);
      std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl;
    
      // 过滤后的点云进行法线估计,为后续进行基于法线的分割准备数据
      ne.setSearchMethod (tree);
      ne.setInputCloud (cloud_filtered);
      ne.setKSearch (50);
      ne.compute (*cloud_normals);
    
      // Create the segmentation object for the planar model and set all the parameters
      seg.setOptimizeCoefficients (true);
      seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
      seg.setNormalDistanceWeight (0.1);
      seg.setMethodType (pcl::SAC_RANSAC);
      seg.setMaxIterations (100);
      seg.setDistanceThreshold (0.03);
      seg.setInputCloud (cloud_filtered);
      seg.setInputNormals (cloud_normals);
      //获取平面模型的系数和处在平面的内点
      seg.segment (*inliers_plane, *coefficients_plane);
      std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl;
    
      // 从点云中抽取分割的处在平面上的点集
      extract.setInputCloud (cloud_filtered);
      extract.setIndices (inliers_plane);
      extract.setNegative (false);
    
      // 存储分割得到的平面上的点到点云文件
      pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ());
      extract.filter (*cloud_plane);
      std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
      writer.write ("table_scene_mug_stereo_textured_plane.pcd", *cloud_plane, false);
    
      // Remove the planar inliers, extract the rest
      extract.setNegative (true);
      extract.filter (*cloud_filtered2);
      extract_normals.setNegative (true);
      extract_normals.setInputCloud (cloud_normals);
      extract_normals.setIndices (inliers_plane);
      extract_normals.filter (*cloud_normals2);
    
      // Create the segmentation object for cylinder segmentation and set all the parameters
      seg.setOptimizeCoefficients (true);   //设置对估计模型优化
      seg.setModelType (pcl::SACMODEL_CYLINDER);  //设置分割模型为圆柱形
      seg.setMethodType (pcl::SAC_RANSAC);       //参数估计方法
      seg.setNormalDistanceWeight (0.1);       //设置表面法线权重系数
      seg.setMaxIterations (10000);              //设置迭代的最大次数10000
      seg.setDistanceThreshold (0.05);         //设置内点到模型的距离允许最大值
      seg.setRadiusLimits (0, 0.1);             //设置估计出的圆柱模型的半径的范围
      seg.setInputCloud (cloud_filtered2);
      seg.setInputNormals (cloud_normals2);
    
      // Obtain the cylinder inliers and coefficients
      seg.segment (*inliers_cylinder, *coefficients_cylinder);
      std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl;
    
      // Write the cylinder inliers to disk
      extract.setInputCloud (cloud_filtered2);
      extract.setIndices (inliers_cylinder);
      extract.setNegative (false);
      pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ());
      extract.filter (*cloud_cylinder);
      if (cloud_cylinder->points.empty ()) 
        std::cerr << "Can't find the cylindrical component." << std::endl;
      else
      {
          std::cerr << "PointCloud representing the cylindrical component: " << cloud_cylinder->points.size () << " data points." << std::endl;
          writer.write ("table_scene_mug_stereo_textured_cylinder.pcd", *cloud_cylinder, false);
      }
      return (0);
    }

    试验打印的结果如下

    原始点云可视化的结果.三维场景中有平面,杯子,和其他物体

    产生分割以后的平面和圆柱点云,查看的结果如下

       

    (3)PCL中实现欧式聚类提取。对三维点云组成的场景进行分割

    #include <pcl/ModelCoefficients.h>
    #include <pcl/point_types.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/filters/extract_indices.h>
    #include <pcl/filters/voxel_grid.h>
    #include <pcl/features/normal_3d.h>
    #include <pcl/kdtree/kdtree.h>
    #include <pcl/sample_consensus/method_types.h>
    #include <pcl/sample_consensus/model_types.h>
    #include <pcl/segmentation/sac_segmentation.h>
    #include <pcl/segmentation/extract_clusters.h>
    
    /******************************************************************************
     打开点云数据,并对点云进行滤波重采样预处理,然后采用平面分割模型对点云进行分割处理
     提取出点云中所有在平面上的点集,并将其存盘
    ******************************************************************************/
    int 
    main (int argc, char** argv)
    {
      // Read in the cloud data
      pcl::PCDReader reader;
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
      reader.read ("table_scene_lms400.pcd", *cloud);
      std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." << std::endl; //*
    
      // Create the filtering object: downsample the dataset using a leaf size of 1cm
      pcl::VoxelGrid<pcl::PointXYZ> vg;
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>);
      vg.setInputCloud (cloud);
      vg.setLeafSize (0.01f, 0.01f, 0.01f);
      vg.filter (*cloud_filtered);
      std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size ()  << " data points." << std::endl; //*
       //创建平面模型分割的对象并设置参数
      pcl::SACSegmentation<pcl::PointXYZ> seg;
      pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
      pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
      pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud<pcl::PointXYZ> ());
      
      pcl::PCDWriter writer;
      seg.setOptimizeCoefficients (true);
      seg.setModelType (pcl::SACMODEL_PLANE);    //分割模型
      seg.setMethodType (pcl::SAC_RANSAC);       //随机参数估计方法
      seg.setMaxIterations (100);                //最大的迭代的次数
      seg.setDistanceThreshold (0.02);           //设置阀值
    
      int i=0, nr_points = (int) cloud_filtered->points.size ();
      while (cloud_filtered->points.size () > 0.3 * nr_points)
      {
        // Segment the largest planar component from the remaining cloud
        seg.setInputCloud (cloud_filtered);
        seg.segment (*inliers, *coefficients);
        if (inliers->indices.size () == 0)
        {
          std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
          break;
        }
    
       
        pcl::ExtractIndices<pcl::PointXYZ> extract;
        extract.setInputCloud (cloud_filtered);
        extract.setIndices (inliers);
        extract.setNegative (false);
    
        // Get the points associated with the planar surface
        extract.filter (*cloud_plane);
        std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
    
        //  // 移去平面局内点,提取剩余点云
        extract.setNegative (true);
        extract.filter (*cloud_f);
        *cloud_filtered = *cloud_f;
      }
    
      // Creating the KdTree object for the search method of the extraction
      pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
      tree->setInputCloud (cloud_filtered);
    
      std::vector<pcl::PointIndices> cluster_indices;
      pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;   //欧式聚类对象
      ec.setClusterTolerance (0.02);                     // 设置近邻搜索的搜索半径为2cm
      ec.setMinClusterSize (100);                 //设置一个聚类需要的最少的点数目为100
      ec.setMaxClusterSize (25000);               //设置一个聚类需要的最大点数目为25000
      ec.setSearchMethod (tree);                    //设置点云的搜索机制
      ec.setInputCloud (cloud_filtered);
      ec.extract (cluster_indices);           //从点云中提取聚类,并将点云索引保存在cluster_indices中
      //迭代访问点云索引cluster_indices,直到分割处所有聚类
      int j = 0;
      for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin (); it != cluster_indices.end (); ++it)
      {
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud<pcl::PointXYZ>);
        for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->indices.end (); ++pit)
        
        cloud_cluster->points.push_back (cloud_filtered->points[*pit]); //*
        cloud_cluster->width = cloud_cluster->points.size ();
        cloud_cluster->height = 1;
        cloud_cluster->is_dense = true;
    
        std::cout << "PointCloud representing the Cluster: " << cloud_cluster->points.size () << " data points." << std::endl;
        std::stringstream ss;
        ss << "cloud_cluster_" << j << ".pcd";
        writer.write<pcl::PointXYZ> (ss.str (), *cloud_cluster, false); //*
        j++;
      }
    
      return (0);
    }

    运行结果:

    不再一一查看可视化的结果

    为了更切合实际的应用我会在这些基本的程序的基础上,进行与实际结合的实例,因为这些都是官方给的实例,我是首先学习一下,至少过一面,这样在后期结合实际应用的过程中会更加容易一点。(因为我也是一边学习,然后回头再在基础上进行更修)

    同时有很多在我的微信公众号上的同学后台与我交流,有时候不能即时回复敬请谅解,(之前,就有一个不知道哪个学校的关注后就一直问我问题,告诉它基本的案例,还要我告诉他怎么实现,本人不才,我也是入门者阿,)

    请扫面二维码关注

  • 相关阅读:
    MVAPICH
    sql server触发器的例子
    Sql Server 判断表或数据库是否存在
    JS验证用户真实姓名
    js实现瀑布流的一种简单方法实例分享
    C#实现登录窗口(不用隐藏)
    判断滚动条到底部的JS代码
    php 中文字符串首字母的获取函数
    C#获取当前页面的URL
    C#动态生成图书信息XML文件
  • 原文地址:https://www.cnblogs.com/li-yao7758258/p/6496664.html
Copyright © 2020-2023  润新知