一、进程
1、进程间数据不共享,如下示例:
import multiprocessing data_list = [] def task(arg): data_list.append(arg) print(data_list) # 每个进程都有自己的一个列表 def run(): for i in range(10): p = multiprocessing.Process(target=task,args=(i,)) p.start() if __name__ == '__main__': run()
2、进程的常用功能
import multiprocessing import time def task(arg): time.sleep(2) print(arg) def run(): print(11111111) p1 = multiprocessing.Process(target=task,args=(1,)) p1.start() p1.join(6) # 等待进程完成,最多等6秒 print(22222222) p2 = multiprocessing.Process(target=task,args=(2,)) p2.start() p2.join() print(33333333) if __name__ == '__main__': run()
import multiprocessing import time def task(arg): time.sleep(2) print(arg) def run(): print(11111111) p1 = multiprocessing.Process(target=task,args=(1,)) p1.daemon = False # 等待进程完成,默认 p1.start() print(22222222) p2 = multiprocessing.Process(target=task,args=(2,)) p2.daemon = True # 不等进程完成 p2.start() print(33333333) if __name__ == '__main__': run()
import multiprocessing import time def task(arg): time.sleep(2) p = multiprocessing.current_process() # 获取当前进程 name = p.name id1 = p.ident # 获取进程id id2 = p.pid # 获取进程id print(arg,name,id1,id2) def run(): print(11111111) p1 = multiprocessing.Process(target=task,args=(1,)) p1.name = 'pp1' # 为进程设置名字pp1 p1.start() print(22222222) p2 = multiprocessing.Process(target=task,args=(2,)) p2.name = 'pp2' # 为进程设置名字pp2 p2.start() print(33333333) if __name__ == '__main__': run()
二、数据共享(内存级别)
1、Queue
import multiprocessing q = multiprocessing.Queue() def task(arg,q): q.put(arg) def run(): for i in range(10): p = multiprocessing.Process(target=task, args=(i, q,)) p.start() while True: v = q.get() print(v) run()
import multiprocessing def task(arg,q): q.put(arg) if __name__ == '__main__': q = multiprocessing.Queue() for i in range(10): p = multiprocessing.Process(target=task,args=(i,q,)) p.start() while True: v = q.get() print(v)
2、Manager
import multiprocessing m = multiprocessing.Manager() dic = m.dict() def task(arg): dic[arg] = 100 def run(): for i in range(10): p = multiprocessing.Process(target=task, args=(i,)) p.start() input('>>>') print(dic.values()) if __name__ == '__main__': run()
import multiprocessing import time def task(arg,dic): time.sleep(2) dic[arg] = 100 if __name__ == '__main__': m = multiprocessing.Manager() dic = m.dict() process_list = [] for i in range(10): p = multiprocessing.Process(target=task, args=(i,dic,)) p.start() process_list.append(p) while True: count = 0 for p in process_list: if not p.is_alive(): # 如果某进程已经执行完毕,则count加1 count += 1 if count == len(process_list): break print(dic)
三、进程锁
进程锁同线程锁的种类和用法一样,参见线程锁。如下是进程锁RLock示例:
import time import multiprocessing lock = multiprocessing.RLock() def task(arg): print('鬼子来了') lock.acquire() time.sleep(2) print(arg) lock.release() if __name__ == '__main__': p1 = multiprocessing.Process(target=task,args=(1,)) p1.start() p2 = multiprocessing.Process(target=task, args=(2,)) p2.start()
问题1:为什么要加进程锁?
线程锁是为了在线程不安全的时候,为一段代码加上锁来控制实现线程安全,即线程间数据隔离;
进程间的数据本来就是隔离的,所以一般不用加锁,当进程间共用某个数据的时候需要加锁;
四、进程池
import time from concurrent.futures import ProcessPoolExecutor def task(arg): time.sleep(2) print(arg) if __name__ == '__main__': pool = ProcessPoolExecutor(5) # 创建一个进程池 for i in range(10): pool.submit(task,i)
五、requests模块和bs4(beautifulsoup)模块 -- (初识爬虫)
1、安装:
pip3 install requests
pip3 install beautifulsoup4
2、示例代码(爬取抽屉网的标题和链接):
import requests from bs4 import BeautifulSoup from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor # 模拟浏览器发送请求 # 内部创建 sk = socket.socket() # 和抽屉进行socket连接 sk.connect(...) # sk.sendall('...') # sk.recv(...) def task(url): print(url) r1 = requests.get( url=url, headers={ 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.92 Safari/537.36' } ) # 查看下载下来的文本信息 soup = BeautifulSoup(r1.text,'html.parser') # print(soup.text) content_list = soup.find('div',attrs={'id':'content-list'}) for item in content_list.find_all('div',attrs={'class':'item'}): title = item.find('a').text.strip() target_url = item.find('a').get('href') print(title,target_url) def run(): pool = ThreadPoolExecutor(5) for i in range(1,50): pool.submit(task,'https://dig.chouti.com/all/hot/recent/%s' %i) if __name__ == '__main__': run()
总结:
1)以上示例进程和线程哪个好?
线程好,因为socket属于IO请求,不占用CPU,所以用多线程即节省资源又提高效率;
2)requests模块模拟浏览器发送请求:
requests.get( . . . ) 本质:
创建socket客户端
连接【阻塞】
发送请求
接收请求【阻塞】
断开连接