Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 24055 | Accepted: 8573 |
Description
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2..M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2..M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Sample Input
2 3 3 1 1 2 2 1 3 4 2 3 1 3 1 3 3 2 1 1 2 3 2 3 4 3 1 8
Sample Output
NO YES判断有无负环。。
#include<iostream> #include<cstdio> #include<cstring> #include<map> #include<cmath> #include<vector> #include<algorithm> #include<set> #include<string> #include<queue> #include <stack> using namespace std; #pragma warning(disable : 4996) const int INF = 999999; const int MAXN = 10005; typedef struct Node { int v;//起点 int u;//终点 int w; }Node; Node edge[MAXN]; int dist[MAXN]; //此处要特别注意,bellman-ford算法中不要使用0x7fffffff,为此wa了n次 int edgenum, n, m, w; bool BellmanFord(int s) { int i, j; bool flag = false; for(i = 1; i <= n; ++i) { dist[i] = INF; //其余点的距离设置为无穷 } dist[s] = 0; //源点的距离设置为0 for(i = 1; i < n; ++i) { flag = false; //优化:如果某次迭代中没有任何一个d值改变,尽可以立刻退出迭代而不需要把所有的n-1次迭代都做完 for(j = 0; j < edgenum; ++j) { if(dist[edge[j].v] > dist[edge[j].u] + edge[j].w) { flag = true; dist[edge[j].v] = dist[edge[j].u] + edge[j].w; } } if(!flag) { break; } } for(i = 0; i < edgenum; ++i) { if(dist[edge[i].v] > dist[edge[i].u] + edge[i].w) { return false;//存在负环 } } return true;//不存在负环 } int main() { freopen("in.txt", "r", stdin); int t, x, y, z; scanf("%d", &t); while (t--) { edgenum = 0; scanf("%d %d %d", &n, &m, &w); for(int i = 1; i <= m; i++) { scanf("%d %d %d", &x, &y, &z); edge[edgenum].u = x; edge[edgenum].v = y; edge[edgenum++].w = z; edge[edgenum].u = y; edge[edgenum].v = x; edge[edgenum++].w = z; } for(int i = 1; i <= w; i++) { scanf("%d %d %d", &x, &y, &z); edge[edgenum].u = x; edge[edgenum].v = y; edge[edgenum++].w = -z; } if(BellmanFord(1)) { printf("NO\n"); } else { printf("YES\n"); } } return 0; }