• PyTorch Quick Start


    听说PyTorch比Tensorflow更加直观,更容易理解,就试一试

    一、安装

    打开官网

    按自己的情况选择,我是在windows上且只使用cpu,下载最新的稳定版。

    直接复制命令运行即可。

    但是Torch有点大,直接用pip下载有点大。我们可以找到命令运行时所下载的xx.whl,拿出来用FDM等多线程下载器下载,然后再安装,例如

    https://download.pytorch.org/whl/cpu/torch-1.6.0%2Bcpu-cp38-cp38-win_amd64.whl
    
    >pip uninstall "torch-1.6.0+cpu-cp38-cp38-win_amd64.whl"

    注意,torchvision版本与torch版本是对应的,不能随意匹配。所以我们用之前的命令把torchvision下完(已经下好的torch会自动跳过)

    二、示例

    import torch
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    # torch.manual_seed(1)    # reproducible
    
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
    
    # torch can only train on Variable, so convert them to Variable
    # The code below is deprecated in Pytorch 0.4. Now, autograd directly supports tensors
    # x, y = Variable(x), Variable(y)
    
    # plt.scatter(x.data.numpy(), y.data.numpy())
    # plt.show()
    
    
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
            self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    net = Net(n_feature=1, n_hidden=10, n_output=1)     # define the network
    print(net)  # net architecture
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
    loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
    
    plt.ion()   # something about plotting
    
    for t in range(200):
        prediction = net(x)     # input x and predict based on x
    
        loss = loss_func(prediction, y)     # must be (1. nn output, 2. target)
    
        optimizer.zero_grad()   # clear gradients for next train
        loss.backward()         # backpropagation, compute gradients
        optimizer.step()        # apply gradients
    
        if t % 5 == 0:
            # plot and show learning process
            plt.cla()
            plt.scatter(x.data.numpy(), y.data.numpy())
            plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
            plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
            plt.pause(0.1)
    
    plt.ioff()
    plt.show()

    三、其他

    增加一层中间层,并使用激活函数,得到3个不同的net,进行横向对比

    """
    View more, visit my tutorial page: https://morvanzhou.github.io/tutorials/
    My Youtube Channel: https://www.youtube.com/user/MorvanZhou
    Dependencies:
    torch: 0.4
    matplotlib
    """
    import torch
    from torch import nn
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    
    x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # x data (tensor), shape=(100, 1)
    y = x.pow(2) + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
    
    # 1 10 1
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden = torch.nn.Linear(n_feature, n_hidden)   # hidden layer
            self.predict = torch.nn.Linear(n_hidden, n_output)   # output layer
    
        def forward(self, x):
            x = F.relu(self.hidden(x))      # activation function for hidden layer
            x = self.predict(x)             # linear output
            return x
    
    # 1 10 10 1
    class simpleNet(nn.Module):
        """
        定义了一个简单的三层全连接神经网络,每一层都是线性的
        """
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(simpleNet, self).__init__()
            self.layer1 = nn.Linear(in_dim, n_hidden_1)
            self.layer2 = nn.Linear(n_hidden_1, n_hidden_2)
            self.layer3 = nn.Linear(n_hidden_2, out_dim)
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    class Activation_Net(nn.Module):
        """
        在上面的simpleNet的基础上,在每层的输出部分添加了激活函数
        """
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(Activation_Net, self).__init__()
            self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.ReLU(True))
            self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.ReLU(True))
            self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
            """
            这里的Sequential()函数的功能是将网络的层组合到一起。
            """
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    class Batch_Net(nn.Module):
        """
        在上面的Activation_Net的基础上,增加了一个加快收敛速度的方法——批标准化
        """
        def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
            super(Batch_Net, self).__init__()
            self.layer1 = nn.Sequential(nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1), nn.ReLU(True))
            self.layer2 = nn.Sequential(nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2), nn.ReLU(True))
            self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
    
        def forward(self, x):
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            return x
    
    
    
    def Use(net):
        # print(net)
        optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
        loss_func = torch.nn.MSELoss()  # this is for regression mean squared loss
    
        prediction = net(x)     # input x and predict based on x
    
        loss = loss_func(prediction, y)     # must be (1. nn output, 2. target)
    
        optimizer.zero_grad()   # clear gradients for next train
        loss.backward()         # backpropagation, compute gradients
        optimizer.step()
    
        return prediction, loss
    
    def Draw(prediction, loss, ax):
        # plt.figure(figsize=(8,6), dpi=80)
        # ax = plt.subplot(1,2,num)
        ax.cla()
        ax.scatter(x.data.numpy(), y.data.numpy())
        ax.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        ax.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 15, 'color':  'red'})
        plt.pause(0.1)
    
    
    def start(ax1, ax2, ax3, ax4, net1, net2, net3, net4):
        for t in range(50):
            print("Generation %d" % t)
            prediction, loss = Use(net1)
            Draw(prediction, loss, ax1)
            prediction, loss = Use(net2)
            Draw(prediction, loss, ax2)
            prediction, loss = Use(net3)
            Draw(prediction, loss, ax3)
            prediction, loss = Use(net4)
            Draw(prediction, loss, ax4)
    
    
        plt.show()
    
    
    plt.figure(figsize=(8, 8), dpi=80)
    ax1 = plt.subplot(2,2,1)
    ax2 = plt.subplot(2,2,2)
    ax3 = plt.subplot(2,2,3)
    ax4 = plt.subplot(2,2,4)
    
    net1 = Net(n_feature=1, n_hidden=10, n_output=1)
    net2 = simpleNet(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1)
    net3 = Activation_Net(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1)
    net4 = Batch_Net(in_dim=1, n_hidden_1=10, n_hidden_2=15, out_dim=1)
    
    start(ax1, ax2, ax3, ax4, net1, net2, net3, net4)

    参考链接:

    1. https://github.com/MorvanZhou/PyTorch-Tutorial/blob/master/tutorial-contents/301_regression.py

    2. https://blog.csdn.net/out_of_memory_error/article/details/81414986

  • 相关阅读:
    第九章 引用
    第八章 指针
    第六章 面向对象
    第五章 if语句与运算符
    第四章 C++数据类型
    第三章 初步了解函数
    第二章 做一个简短的C++程序
    第一章 初始C++
    vs2012 快捷键+方法
    vue如何修改生效日期范围,以及转化成yyyy-mm-dd的格式
  • 原文地址:https://www.cnblogs.com/lfri/p/13461104.html
Copyright © 2020-2023  润新知