• NodeJs 多核多进程并行框架实作 CNode


    NodeJs 多核多进程并行框架实作 - CNode

    NodeJs 多核多进程并行框架实作

    多核编程的重要性无需多说, 我们直奔主题,目前nodejs 的网络服务器有以下几种支持多进程的方式:



    #1 开启多个进程,每个进程绑定不同的端口,用反向代理服务器如 Nginx 做负载均衡,好处是我们可以借助强大的 Nginx 做一些过滤检查之类的操作,同时能够实现比较好的均衡策略,但坏处也是显而易见 ---我们引入了一个间接层。



    #2 多进程绑定在同一个端口侦听

    在nodejs 中,提供了进程间发送“文件句柄” 的功能,这个功能实在是太有用了(貌似是yahoo 的工程师提交的一个patch)

    不明真相的群众可以看这里: http://www.lst.de/~okir/blackhats/node121.html

    在 node 中我们可以通过以下函数达到效果:

    stream.write(string, encoding='utf8', [fd])


    或在 node v0.5.9+ 中 fork 子进程之后:

    child.send(message, [sendHandle])




    所以我们设计以下方案:master 进程生成了listen 端口之后,发送这个 listenfd 给所有的worker 子进程,worker 子进程接收到handle 之后,执行listen 操作:



    master :

    function startWorker(handle){
    
      output("start workers :" + WORKER_NUMBER);
    
      worker_succ_count = 0;
    
      for(var i=0; i    var c  =  cp.fork(WORKER_PATH);
    
        c.send({"server" : true}, handle);
    
      }
    
    }
    
    
    
    function startServer(){
    
      var tcpServer = net.createServer();
    
      tcpServer.on("error", function(err){
    
        output("server error ,check the port...");
    
        about_exit();
    
      })
    
      tcpServer.listen(PORT , function(){
    
        startWorker(tcpServer._handle);
    
        tcpServer.close();
    
      });
    
    }
    
    
    
    startServer();


    注意,因为我们只需要一个handle ,httpServer 其实是netServer 的一层封装,所以我们在master进程启动netServer ,发送这个listen套接字 “handle” 到各个子进程

    worker :

    server = http.createServer(function(req, res){
    
      var i,r;
    
      for(i=0; i<10000; i++){
    
        r = Math.random();
    
      }
    
      res.writeHead(200 ,{"content-type" : "text/html"});
    
      res.end("hello,world");
    
      child_req_count++;
    
    });
    
    
    
    process.on("message",function(m ,handle){
    
      if(handle){
    
        server.listen(handle, function(err){
    
          if(err){
    
            output("worker listen error");
    
          }else{
    
            process.send({"listenOK" : true});
    
            output("worker listen ok");
    
          }
    
       });
    
      
    
     });




    worker 进程收到handle后,立即进行listen ,这样就会有多个worker进程 listen同一个socket端口,即同一个套接字被加入到多个进程的epoll 监控结构中,当一个外部连接到来时,此时只有一个幸运的worker 进程得到激活事件,接收这个连接。(在UNP 中讲到这种情况下会导致 “惊群” 效应,但据江湖传闻2.6以上的Linux 系统中,阻塞式的listenfd 已消除惊群现象,非阻塞的listenfd 依然存在,即我们的epoll还是会存在这个问题的,但个人认为nodejs 的epoll 结构中往往有很多的监控句柄而非仅listenfd,所以这时候惊群造成的影响应该是比较小的...)



    我们开5个worker 测试 (以下测试均为开启keep-alive模式,本机测试):



    测试业务如上代码所示:运行10K次 Math.random(), 然后输出 ”hello,world“;



    系统配置:


    Linux 2.6.18-164.el5xen x86_64



    CPU X5 ,Intel(R) Xeon(R) CPU E5620 @ 2.40GHz



    free -m

    total used free shared buffers cached

    Mem: 7500 3672 3827 0 863 1183






    siege -c 100 -r 1000 -b localhost:3458/




    结果为:




    ransactions: 100000 hits

    Availability: 100.00 %

    Elapsed time: 10.95 secs

    Data transferred: 1.05 MB

    Response time: 0.01 secs

    Transaction rate: 9132.42 trans/sec

    Throughput: 0.10 MB/sec

    Concurrency: 55.61

    Successful transactions: 100000




    5 个worker 处理的请求量分别是:


    child req total : 23000

    child req total : 16000

    child req total : 17000

    child req total : 22000

    child req total : 22000




    再测一次:


    child req total : 13000

    child req total : 30000

    child req total : 14000

    child req total : 22000

    child req total : 21000




    在这种情况下,我们的负载均衡是建立在各个worker“随机接收“的特征基础上的,由操作系统来保证的,长期运行情况下应该是均衡的,但短期内还是会有可能导致负载倾斜的现象,特别是在客户端使用keep-alive连接并长期不关闭的情况下。





    #3 一个进程负责监听、接收连接,然后把接收到的连接平均发送到子进程中去处理



    我们先看一下正常情况下一个http server 服务的流程 ,其大体可分为几 个阶段:



    listenfd 绑定侦听 -> 接收到的Tcp 连接对象包装成socket 对象生成(req ,res)对象 -> 调用用户代码







    (#1) TCP.bind --- > TCP.listen (process.binding(“tcp_wrap”))

                                                    |

                                                    |TCP.emit(“connection” ,handle)

                                                    |

    (#2) Wrap TCP handle to Socket (Tcp.onconnection)

                                                    |

                                                    |Net.Server.emit(”connection” , socket)

                                                    |

    (#3)Create Req ,Res based on a Socket(net.server.connectionListen)

                                                    |

                                                    |Http.server.emit(“request” ,req ,res)

                                                    |

    (#4)your code writen here :function(req ,res){

        res.writeHead(200 ,“content-type/text/html”);

        res.end(“hello,world”)

    }






    nodejs 的child.send(message, [sendHandle]) 函数 ,此处的 sendHandle 这时应该为一个 tcp_wrap 对象,所以我们不能直接使用 net.createServer 返回给我们的socket ,否则的话我们需要”回滚“ 从Tcp 到 Socket 这一步骤,不仅浪费资源,同时也是不安全的,所以我们在tcpMaster 中 直接使用 tcp_wrap :

    
    
    var TCP = process.binding("tcp_wrap").TCP;
    
    
    
    var childs = [];
    
    var last_child_pos = 0;
    
    function startWorker(){
    
      for(var i=0; i    var c  =  cp.fork(WORKER_PATH);
    
        childs.push(c);
    
      }
    
    }
    
    function startServer(){
    
        server = new TCP();
    
        server.bind(ADDRESS, PORT);
    
        server.onconnection = onconnection;
    
        server.listen(BACK_LOG);
    
      }
    
    function onconnection(handle){
    
        //output("master on connection");
    
        last_child_pos++;
    
        if(last_child_pos >= WORKER_NUMBER){
    
          last_child_pos = 0;
    
        }
    
        childs[last_child_pos].send({"handle" : true}, handle);
    
        handle.close();
    
    }
    
    startServer();
    
    startWorker();
    
    


    以上为tcpMaster 进程把接收的tcp 连接 均匀分配给 tcpWorkers :



    function onhandle(self, handle){
    
        if(self.maxConnections && self.connections >= self.maxConnections){
    
          handle.close();
    
          return;
    
        }
    
        var socket = new net.Socket({
    
          handle : handle,
    
          allowHalfOpen : self.allowHalfOpen
    
        });
    
        socket.readable = socket.writable = true;
    
        socket.resume();
    
        self.connections++;
    
        socket.server = self;
    
        self.emit("connection", socket);
    
        socket.emit("connect");
    
      }
    
    server = http.createServer(function(req, res){
    
        var r, i;
    
          for(i=0; i<10000; i++){
    
            r = Math.random();
    
          }
    
          res.writeHead(200 ,{"content-type" : "text/html"});
    
          res.end("hello,world");
    
          child_req_count++;
    
        });
    
    }
    
     process.on("message",function(m ,handle){
    
         if(handle){
    
            onhandle(server, handle);
    
         }
    
        if(m.status == "update"){
    
          process.send({"status" : process.memoryUsage()});
    
        }
    
      }); 




    以上为tcpWorker 将接收到的tcp handle 封装成socket ,为了充分的与http.server类兼容,我们还对connections的数量进行检查,并把socket.server 设为当前的server ,然后激发http.server 的 ”connection“ 事件.



    通过这种方式,我们用尽量小的开销,在充分保证http.server 类的兼容性的前提下,用尽量少而优雅的代码实现了负载均衡与高效并行。

    测试结果如下:



    ransactions: 100000 hits

    Availability: 100.00 %

    Elapsed time: 10.47 secs

    Data transferred: 1.05 MB

    Response time: 0.01 secs

    Transaction rate: 9551.10 trans/sec

    Throughput: 0.10 MB/sec

    Concurrency: 60.68

    Successful transactions: 100000



    child req total : 20000

    child req total : 20000

    child req total : 20000

    child req total : 20000

    child req total : 20000


    数据会有所起伏,qps 总体在 8000~11000 范围内,注意以上worker 数目均设为5个,适量增大worker数目,qps 可以稳定达到10k,但这时系统load比较高,使用时需谨慎选择。



    几次测试完成后,我们查看/proc/[tcpMaster]/fd , 其占用的端口如下:


    0 -> /dev/pts/30

    1 -> /dev/pts/30

    10 -> socket:[71040]

    11 -> socket:[71044]

    12 -> socket:[71054]

    2 -> /dev/pts/30

    3 -> eventpoll:[71027]

    4 -> pipe:[71028]

    5 -> pipe:[71028]

    6 -> socket:[71030]

    8 -> socket:[71032]

    9 -> socket:[71036]


    查看其中一个tcpWorker:


    0 -> socket:[71031]

    1 -> /dev/pts/30

    2 -> /dev/pts/30

    3 -> eventpoll:[71049]

    4 -> pipe:[71050]

    5 -> pipe:[71050]


    tcpMaster 的fds 意义分别如下:


    • 1个socket为listenfd
    • 5个socket 用作父子进程通信
    • 2个pipe(一对)用于asyn_watcher/signal_watcher 的触发
    • 剩余的不解释..




    tcpWorker 的fds 意义分别如下:


    • 1个socket(这儿就是stdin)用作与父进程通信
    • 其余fd与master中fd作用类似




    所以tcpMaster/tcpWorker 端口占用正常,没有句柄泄露问题,负载均衡可控,但负责接收socket的master需要重新分配发送socket ,引入了额外的开销.



    小结:



    本文介绍了2种比较高效的多进程运行方式,两种方式各有优劣,需要使用者自行选择,在node v0.5.10+ 中,内置了cluster 库,不过在我看来,其宣传意义大于实用意义,因为这样官方就可理直气壮的宣称直接支持多进程运行方式,nodejs 官方为了让API 接口傻瓜化,用了一些比较trick 的方法,代码也比较绕,且这种多进程的方式,不可避免的要牵涉到进程通信、进程管理之类的东西,但我们往往有自己的需求,现在nodejs官方把它固化到lib中,我们就无法自由的更改添加一些功能。



    此外,有两个node 的module ,multi-node 和 cluster ,采用的策略和本文介绍的类似,但使用这些module往往有一些缺点:


    • 更新不及时
    • 复杂庞大,往往绑定了很多其他的功能,用户往往被绑架
    • 遇到问题难以hack






    基于本文的介绍,你可以很方便的打造自己的高性能的、易维护的、最简的、优雅实用的cluster ,enjoy it!



    源码地址:https://github.com/windyrobin/iCluster



    以下文章有些老,但和本文的策略很相似(俺是独立构思完后看到的,别喷俺抄袭哦):

    http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/

  • 相关阅读:
    Java IO2
    Java IO1 复制粘贴文件
    Java superArray2
    17杭州女子专场赛
    组队赛 A Promotions 深搜+逆向思维
    Java处理异常小试
    再谈Dijkstra算法和堆优化
    仿照JAVA vector模型写一个SuperArray
    HDU 2017女生赛04 (变形最短路)
    Gym-100712J 桶排序思想&反向思维
  • 原文地址:https://www.cnblogs.com/lexus/p/2478260.html
Copyright © 2020-2023  润新知