• a^1+b problem


    • 题目链接
      uoj#182

    • 前言

      刚看到题以为是毒瘤数据结构,没想到是毒瘤多项式......

    • 题意

      给定一个\(n\)个元素的序列{\(a_n\)},有\(2\)种操作:

      \(1.\) 给序列中的每个数加\(x\)

      \(2.\) 将序列中的每个数变为其逆元(保证此时每个数存在逆元)

      现在有\(m\)次操作,求每次操作后序列的和。

    • 题解

      首先每个数在操作后一定会变成\(\frac{ax+b}{cx+d}\) 的形式(我这一步没想到,然后直接弃了

      那么我们将其化成\(e+f·\frac{1}{x+g}\) 的形式,令函数\(F(x)\)为这个东西,那么答案为

      \[\sum_{i=1}^{n} F(a_i)=ne+f·\sum_{i=1}^n \frac{1}{a_i+g} \]

      这东西看着就知道很不好求,考虑构造函数\(G(x)=\prod_{i=1}^n (a_i+x)\) ,将答案乘上\(G(g)\),那么就有

      \[G(g)\sum_{i=1}^n F(a_i)=neG(g)+f·\sum_{i=1}^n \prod_{j \neq i}(a_j+g) \]

      这样就可以考虑再构造函数\(H(x)=\sum_{i=1}^n \prod_{j \neq i} (a_j+x)\) ,所以

      \[\sum_{i=1}^n F(a_i)=ne+f·\frac{H(g)}{G(g)} \]

      所以就直接离线,多项式多点求值,就做完了。

    • 实现

      \(G\)可以直接分治\(fft\)解决,\(H\)观察一下发现是\(G\)的导数,可以直接求导解决。

      时间复杂度\(O(nlog^2n)\)

  • 相关阅读:
    【POJ 3669】Meteor Shower
    【BZOJ 1003】[ZJOI2006]物流运输trans
    【POJ 3662】Telephone Lines
    【UVa 1593】Alignment of Code
    【POJ 3661】Running
    [HNOI2015]开店 简要题解
    trie上构建后缀数组
    [CQOI2017]老C的方块
    [JSOI2018]潜入行动 (树形背包)
    李超线段树 总结
  • 原文地址:https://www.cnblogs.com/leukocyte/p/13387797.html
Copyright © 2020-2023  润新知